


Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19 Important
Example 20 Important
Example 21 Important
Example 22
Example 23
Example 24 Important
Example 25 Important
Example 26 Important You are here
Example 27 Deleted for CBSE Board 2022 Exams
Example 28 Important Deleted for CBSE Board 2022 Exams
Example 29 Important Deleted for CBSE Board 2022 Exams
Example 30 Important Deleted for CBSE Board 2022 Exams
Example 31 Important Deleted for CBSE Board 2022 Exams
Example 32 Important Deleted for CBSE Board 2022 Exams
Example 33 Important
Example 34 Deleted for CBSE Board 2022 Exams
Example 35 Deleted for CBSE Board 2022 Exams
Example 36 Important
Example 37 Important
Example 26 Let X denote the number of hours you study during a randomly selected school day. The probability that X can take the values x, has the following form, where k is some unknown constant. P(X = x) = {β(0.1 , ππ π₯=0@ππ₯, ππ π₯=1 ππ 2@π(5βπ₯), ππ π₯=3 ππ 4@0, ππ‘βπππ€ππ π)β€ (a) Find the value of kMaking in tabular foArmat Since X is a random variable , its Sum of Probabilities is equal to 1 β_0^4βγπ(π)γ = 1 P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 1 0.1 + k + 2k + 2k + k = 1 6k = 1 β 0.1 6k = 0.9 k = (0. 9)/6 k = 0.15 Example 26 (b) What is the probability that you study atleast two hours? Exactly two hours? At most 2 HoursOur probability distribution table is P(you study atleast two hours) = P(X β₯ 2) = P(X = 2) + P(X = 3) + P(X = 4) = 2k + 2k + k = 5k = 5 Γ 0.15 = 0.75 P(you study exactly two hours) = P(X = 2) = 2k = 2 Γ 0.15 = 0.30 P(you study atmost two hours) = P(X β€ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.1 + k + 2k = 0.1 + 3k = 0.1 + 3 Γ 0.15 = 0.1 + 0.45 = 0.55