# Example 18 - Chapter 13 Class 12 Probability

Last updated at May 29, 2018 by Teachoo

Last updated at May 29, 2018 by Teachoo

Transcript

Example 18 Suppose that the reliability of a HIV test is specified as follows: Of people having HIV, 90% of the test detect the disease but 10% go undetected. Of people free of HIV, 99% of the test are judged HIV ive but 1% are diagnosed as showing HIV +ive. From a large population of which only 0.1% have HIV, one person is selected at random, given the HIV test, and the pathologist reports him/her as HIV + ive. What is the probability that the person actually has HIV? Let E : person selected has HIV F : person selected does not have HIV G: test judges HIV +ve We need to find the Probability that the person selected actually has HIV, if the test judges HIV +ve i.e. P(E|G) P(E|G) = . ( | ) . | + . ( | ) Putting values in formula, P(E|G) = 0.001 0.9 0.001 0.9 + 0.999 0.01 = 9 10 4 9 10 4 + 99.9 10 4 = 10 4 9 10 4 [9 + 99.9] = 9 108.9 = = 0.083 (approx) Therefore, required probability is 0.083

Examples

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6 Important

Example 7 Important

Example 8

Example 9

Example 10

Example 11 Important

Example 12

Example 13

Example 14

Example 15

Example 16

Example 17 Important

Example 18 Important You are here

Example 19

Example 20 Important

Example 21 Important

Example 22

Example 23

Example 24

Example 25 Important

Example 26 Important

Example 27 Important

Example 28 Important

Example 29 Important

Example 30

Example 31 Important

Example 32 Important

Example 33

Example 34

Example 35 Important

Example 36 Important

Example 37

Chapter 13 Class 12 Probability

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.