Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at Feb. 15, 2020 by Teachoo

Transcript

Example 30 Six balls are drawn successively from an urn containing 7 red and 9 black balls. Tell whether or not the trials of drawing balls are Bernoulli trials when after each draw the ball drawn is (i) replaced If a trial is Bernoulli, then There is finite number of trials They are independent Trial has 2 outcomes i.e. Probability success = P then Probability failure = q = 1 – P (4) Probability of success (P) is same for all trials Let, Probability of success = Probability of drawing red ball p = 7/16 Here, Number of trial is finite There are two outcomes (3) Probability of success (p) does not change in trial, as Probability of drawing red ball is same Hence, it is a Bernoulli trial Example 30 Six balls are drawn successively from an urn containing 7 red and 9 black balls. Tell whether or not the trials of drawing balls are Bernoulli trials when after each draw the ball drawn is (ii) not replaced in the urn.If a trial is Bernoulli, then There is finite number of trials They are independent Trial has 2 outcomes i.e. Probability success = P then Probability failure = q = 1 – P (4) Probability of success (P) is same for all trials Let Probability of success = Probability of drawing red ball In first trial 7 red & 9 black ball Probability drawing red (p) = 7/16 In second trial Since, Probability of success (p) changes in all trials, Hence, the trials are not Bernoulli trial If Ball drawn is red in 1st trial 6 red ball & 9 black ball Probability drawing red = p = 6/15 If Ball drawn is black in 1st trial 7 red ball & 8 black ball Probability drawing red = p = 7/15

Examples

Example 1

Example 2

Example 3

Example 4

Example 5 Important

Example 6

Example 7 Important

Example 8

Example 9 Important

Example 10

Example 11 Important

Example 12 Important

Example 13 Important

Example 14 Important

Example 15 Important

Example 16

Example 17 Important

Example 18 Important

Example 19 Important

Example 20 Important

Example 21 Important

Example 22

Example 23

Example 24 Important

Example 25 Important

Example 26 Important

Example 27

Example 28 Important

Example 29 Important

Example 30 Important You are here

Example 31 Important

Example 32 Important

Example 33 Important

Example 34 Important

Example 35 Important

Example 36 Important

Example 37 Important

Chapter 13 Class 12 Probability

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.