

Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important You are here
Example 12 Important
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19 Important
Example 20 Important
Example 21 Important
Example 22
Example 23
Example 24 Important
Example 25 Important
Example 26 Important
Example 27
Example 28 Important Deleted for CBSE Board 2023 Exams
Example 29 Important
Example 30 Important Deleted for CBSE Board 2023 Exams
Example 31 Important Deleted for CBSE Board 2023 Exams
Example 32 Important Deleted for CBSE Board 2023 Exams
Example 33 Important
Example 34 Deleted for CBSE Board 2023 Exams
Example 35
Example 36 Important
Example 37 Important
Last updated at March 16, 2023 by Teachoo
Example 11 An unbiased die is thrown twice. Let the event A be ‘odd number on the first throw’ and B the event ‘odd number on the second throw’. Check the independence of the events A and B. Two events A & B are independent if P(A ∩ B) = P(A) . P(B) An unbiased die is thrown twice S = Let us define two events as A : Odd number on the First throw B : Odd number on the Second throw vA : Odd number on First throw A : { (1, 1), (1, 2), ………., (1, 6) (3, 1), (3, 2), ………., (3, 6) (5, 1), (5, 2), ………., (5, 6) } P(A) = 𝟏𝟖/𝟑𝟔 = 𝟏/𝟐 B : Odd number on Second throw B : { (1, 1), (2, 1), ………., (6, 1) (1, 3), (2, 3), ………., (6, 3) (1, 5), (2, 5), ………., (6, 5) } P(A) = 𝟏𝟖/𝟑𝟔 = 𝟏/𝟐 B : Odd number on Second throw B : { (1, 1), (2, 1), ………., (6, 1) (1, 3), (2, 3), ………., (6, 3) (1, 5), (2, 5), ………., (6, 5) } P(A) = 𝟏𝟖/𝟑𝟔 = 𝟏/𝟐 B : Odd number on Second throw B : { (1, 1), (2, 1), ………., (6, 1) (1, 3), (2, 3), ………., (6, 3) (1, 5), (2, 5), ………., (6, 5) } P(A) = 𝟏𝟖/𝟑𝟔 = 𝟏/𝟐 A ∩ B = Odd number on the First & Second throw = { (1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5)} So, P(A ∩ B) = 9/36 = 1/4 Now, P(A) . P(B) = 1/2 × 1/2 = 1/4 Since P(A ∩ B) = P(A) . P(B), Therefoare, A and B are independent events