Solve all your doubts with Teachoo Black (new monthly pack available now!)

Are you in **school**? Do you **love Teachoo?**

We would love to talk to you! Please fill this form so that we can contact you

Examples

Example 1

Example 2

Example 3

Example 4

Example 5 Important

Example 6

Example 7 Important

Example 8

Example 9 Important

Example 10

Example 11 Important

Example 12 Important

Example 13 Important

Example 14 Important

Example 15 Important

Example 16

Example 17 Important

Example 18 Important

Example 19 Important

Example 20 Important

Example 21 Important

Example 22

Example 23

Example 24 Important You are here

Example 25 Important

Example 26 Important

Example 27

Example 28 Important Deleted for CBSE Board 2023 Exams

Example 29 Important

Example 30 Important Deleted for CBSE Board 2023 Exams

Example 31 Important Deleted for CBSE Board 2023 Exams

Example 32 Important Deleted for CBSE Board 2023 Exams

Example 33 Important

Example 34 Deleted for CBSE Board 2023 Exams

Example 35

Example 36 Important

Example 37 Important

Chapter 13 Class 12 Probability

Serial order wise

Last updated at Feb. 15, 2020 by Teachoo

Example 24 Two cards are drawn successively with replacement from a well-shuffled deck of 52 cards. Find the probability distribution of the number of aces. Let X : Number of aces We select two cards, So, we can select 2 Aces or 1 Aces or 0 Aces So, value of X can be 0, 1 & 2 There are 4 aces out of 52 So, P(ace) = 4/52 P(not ace) = 1 – P(ace) = 1 – 4/52 = 48/52 Finding probabilities separately For X = 0 Out of two cards, no ace is selected P(X = 0) = P(no ace) × P(no ace) = 48/52 × 48/52 = 144/169 There are 4 aces out of 52 So, P(ace) = 4/52 P(not ace) = 1 – P(ace) = 1 – 4/52 = 48/52 Finding probabilities separately For X = 0 Out of two cards, no ace is selected P(X = 0) = P(no ace) × P(no ace) = 48/52 × 48/52 = 144/169 For X = 1 Out of two Cards, One ace is selected There can be two cases Ace is selected first, then no ace No ace is selected first, then ace P(X = 1) = P(ace) × P(no ace) + P(no ace) × P(ace) = 4/52 × 48/52+4/52 × 48/52 = 12/169+12/169 = 24/169 X = 2 We select two aces P(X = 2) = P(ace) × P(ace) = 4/52 × 4/52 = 1/169 Thus Probability distribution is