Example 22 - Prove cos2 x + cos2 (x + pi/3) + cos2 (x - pi/3) - Examples

part 2 - Example 22 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 3 - Example 22 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 4 - Example 22 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 5 - Example 22 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions

Share on WhatsApp

Transcript

Example 22 Prove that cos2 ๐‘ฅ+cos2 (๐‘ฅ+๐œ‹/3) + cos2 (๐‘ฅโˆ’๐œ‹/3) = 3/2 Lets first calculate all 3 terms separately We know that cos 2x = 2 cos2 x โˆ’ 1 cos 2x + 1 = 2cos2 x ๐‘๐‘œ๐‘ โกใ€–2๐‘ฅ + 1ใ€—/2 = cos2 x cos2 x = ๐œ๐จ๐ฌโกใ€–๐Ÿ๐’™ + ๐Ÿใ€—/๐Ÿ Replacing x with ("x + " ๐…/๐Ÿ‘) cos2 ("x" +๐…/๐Ÿ‘) = cosโกใ€–2(๐‘ฅ + ๐œ‹/3)+1ใ€—/2 = ๐’„๐’๐’”โกใ€–(๐Ÿ๐’™ + ๐Ÿ๐…/๐Ÿ‘) + ๐Ÿใ€—/๐Ÿ Similarly, Replacing x with ("x โˆ’" ๐…/๐Ÿ‘) in cos2 x = ๐œ๐จ๐ฌโกใ€–๐Ÿ๐’™ + ๐Ÿใ€—/๐Ÿ cos2 ("x" โˆ’๐œ‹/3) = cosโกใ€–2(๐‘ฅ โˆ’ ๐œ‹/3)+ 1ใ€—/2 = cosโกใ€–(2๐‘ฅ โˆ’ 2๐œ‹/3)+ 1ใ€—/2 Solving L.H.S cos2 x + cos2 (๐‘ฅ+ ๐œ‹/3) + cos2 (๐‘ฅโˆ’๐œ‹/3) = (๐Ÿ + ๐œ๐จ๐ฌโก๐Ÿ๐’™)/๐Ÿ + (๐Ÿ + ๐’„๐’๐’”โก(๐Ÿ๐’™ + ๐Ÿ๐…/๐Ÿ‘))/๐Ÿ + (๐Ÿ + ๐’„๐’๐’”โก(๐Ÿ๐’™ โˆ’ ๐Ÿ๐…/๐Ÿ‘))/๐Ÿ = 1/2 [1+cosโกใ€–2๐‘ฅ+1+๐‘๐‘œ๐‘ (2๐‘ฅ+2๐œ‹/3)+1+๐‘๐‘œ๐‘ (2๐‘ฅโˆ’2๐œ‹/3)ใ€— ] = 1/2 [3+cosโกใ€–2๐‘ฅ+๐’„๐’๐’”(๐Ÿ๐’™+๐Ÿ๐…/๐Ÿ‘)+๐’„๐’๐’”(๐Ÿ๐’™โˆ’๐Ÿ๐…/๐Ÿ‘)ใ€— ] = 1/2 [3+cosโกใ€–2๐‘ฅ+2๐’„๐’๐’”((๐Ÿ๐’™ + ๐Ÿ๐…/๐Ÿ‘ + ๐Ÿ๐’™ โˆ’ ๐Ÿ๐…/๐Ÿ‘)/๐Ÿ).๐’„๐’๐’”((๐Ÿ๐’™ + ๐Ÿ๐…/๐Ÿ‘ โˆ’(๐Ÿ๐’™ โˆ’ ๐Ÿ๐…/๐Ÿ‘))/๐Ÿ)ใ€— ] = 1/2 [3+cosโกใ€–2๐‘ฅ+2๐‘๐‘œ๐‘ ((4๐‘ฅ + 0)/2).๐‘๐‘œ๐‘ ((0 + 4๐œ‹/3)/2)ใ€— ] = 1/2 [3+cosโกใ€–2๐‘ฅ+2๐‘๐‘œ๐‘ (4๐‘ฅ/2).๐‘๐‘œ๐‘ ((4๐œ‹/3)/2)ใ€— ] = 1/2 [3+cosโกใ€–2๐‘ฅ+๐Ÿ ๐œ๐จ๐ฌโก๐Ÿ๐’™ ๐œ๐จ๐ฌโกใ€–๐Ÿ๐…/๐Ÿ‘ใ€— ใ€— ] = 1/2 [3+cosโกใ€–2๐‘ฅ+2 cosโก2๐‘ฅ cosโก(๐œ‹โˆ’๐œ‹/3) ใ€— ] = 1/2 [3+cosโกใ€–2๐‘ฅ+2 cosโก2๐‘ฅ ใ€— (ใ€–โˆ’๐’„๐’๐’”ใ€—โก(๐…/๐Ÿ‘) ) ] = 1/2 [3+cosโกใ€–2๐‘ฅ+2 cosโก2๐‘ฅ ใ€— (โˆ’1/2) ] = 1/2 [3+cosโกใ€–2๐‘ฅโˆ’2 ร—1/2ร—cosโก2๐‘ฅ ใ€— ] = ๐Ÿ/๐Ÿ [๐Ÿ‘+๐’„๐’๐’”โกใ€–๐Ÿ๐’™โˆ’๐’„๐’๐’”โก๐Ÿ๐’™ ใ€— ] = 1/2 [3+0] = 3/2 = R.H.S. Hence, L.H.S. = R.H.S. Hence Proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo