Last updated at May 29, 2018 by Teachoo

Transcript

Example 24 Solve 2 cos2 x + 3 sin x = 0 2 cos2x + 3 sin x = 0 2 (1 − sin2 x) + 3 sin x = 0 2 – 2 sin2x + 3 sin x = 0 – 2sin2x + 3sin x + 2 = 0 Let sin x = a – 2a2 + 3a + 2 = 0 0 = 2a2 – 3a – 2 2a2 – 3a – 2 = 0 2a2 – 4a + a – 2 = 0 2a (a – 2) + 1 (a – 2) = 0 (2a + 1) (a – 2) = 0 Hence 2a + 1 = 0 2a = 0 – 1 2a = – 1 a = (−1)/2 So, a = (−1)/2 & a = 2 Hence sin x = (−1 )/2 or sin x = 2 Value of sin is always between -1 and 1 Hence sin x = 2 is not Possible ∴ sin x = (−1)/2 We find its solution Solving sin x = (−𝟏)/𝟐 Let sin x = sin y given sin x = (−1)/2 From (1) and (2) sin y = (−1)/2 sin y = sin 7𝜋/6 y = 7𝜋/6 General Solution is x = nπ + ( -1 )n y where n ∈ Z Put y = 7𝜋/6 Hence, x = nπ + (-1)n 7𝜋/6 Where n ∈ Z

Examples

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11

Example 12

Example 13

Example 14

Example 15

Example 16

Example 17

Example 18

Example 19

Example 20

Example 21

Example 22

Example 23

Example 24 Important You are here

Example 25

Example 26

Example 27 Important

Example 28 Important

Example 29

Chapter 3 Class 11 Trigonometric Functions

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.