Learn All Concepts of Chapter 2 Class 11 Relations and Function - FREE. Check - Trigonometry Class 11 - All Concepts



Last updated at Feb. 12, 2020 by Teachoo
Learn All Concepts of Chapter 2 Class 11 Relations and Function - FREE. Check - Trigonometry Class 11 - All Concepts
Transcript
Example 6 If cosβ‘π₯ = β 3/5 , x lies in third quadrant, find the values of other five trigonometric functions. Since x is in lllrd Quadrant sin and cos will be negative But tan will be positive Given cos x = (β3)/5 We know that sin2 x + cos2 x = 1 sin2 x + ((β3)/5)^2 = 1 sin2 x + 9/25 = 1 sin2 x = 1 β 9/25 sin2 x = (25 β 9)/25 sin2 x = (25 β 9)/25 sin2x = 16/25 sin x = Β±β(16/25) sin x = Β± 4/5 Since, x is in lllrd Quadrant And sin x is negative lllrd Quadrant β΄ sin x = βπ/π tan x = sinβ‘π₯/cosβ‘π₯ = (β 4/5)/(β 3/5) = (β4)/5 Γ 5/(β3) = π/π cot x = 1/tanβ‘π₯ = 1/(4/3) = π/π cosec x = 1/sinβ‘π₯ = 1/(β 4/5) = (βπ)/π sec x = 1/cosβ‘π₯ = 1/((β3)/5) = 5/(β3) = (βπ)/π
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6 Important You are here
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13
Example 14
Example 15
Example 16 Important
Example 17 Important
Example 18
Example 19 Important
Example 20 Not in Syllabus - CBSE Exams 2021
Example 21 Not in Syllabus - CBSE Exams 2021
Example 22 Important Not in Syllabus - CBSE Exams 2021
Example 23 Not in Syllabus - CBSE Exams 2021
Example 24 Important Not in Syllabus - CBSE Exams 2021
Example 25 Important
Example 26 Important
Example 27 Important
Example 28 Important
Example 29 Important
About the Author