


Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6 Important
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13
Example 14
Example 15
Example 16 Important
Example 17 Important
Example 18
Example 19
Example 20 Deleted for CBSE Board 2023 Exams
Example 21 Deleted for CBSE Board 2023 Exams
Example 22 Important Deleted for CBSE Board 2023 Exams You are here
Example 23 Deleted for CBSE Board 2023 Exams
Example 24 Important Deleted for CBSE Board 2023 Exams
Example 25 Important
Example 26
Example 27 Important
Example 28 Important
Example 29 Important
Examples
Last updated at March 22, 2023 by Teachoo
Example 22 Solve tan 2x = – cot (x" + " 𝜋/3) tan 2x = –cot (𝑥" + " 𝜋/3) We need to make both in terms of tan Rough tan (90° + θ) = –cot θ –cot θ = tan (90° + θ) –cot θ = tan (𝜋/2 " + θ" ) Replacing θ by x + 𝜋/3 –cot ("x + " 𝜋/3) = tan (𝜋/2 "+ x +" 𝜋/3) tan 2x = tan (𝜋/2+x" + " 𝜋/3) tan 2x = tan (𝜋/2 " + " 𝜋/3 " + x" ) tan 2x = tan ((3𝜋 + 2𝜋)/(2 × 3) " + x" ) tan 2x = tan (5𝜋/6 " + x" ) General solution Let tan x = tan y tan 2x = tan 2y From (1) and (2) tan 2y = tan (5𝜋/6 " + x" ) 2y = 5𝜋/6 + x General solution is 2x = nπ + 2y where n ∈ Z Put 2y = ("x + " 5𝜋/6) 2x = nπ + ("x + " 5𝜋/6) 2x – x = nπ + 5𝜋/6 x = nπ + 𝟓𝝅/𝟔 where n ∈ Z