





Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6 Important
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13
Example 14
Example 15
Example 16 Important
Example 17 Important
Example 18
Example 19
Example 20
Example 21
Example 22 Important
Example 23
Example 24 Important
Example 25 Important You are here
Example 26
Example 27 Important
Example 28 Important
Example 29 Important
Examples
Last updated at Feb. 13, 2020 by Teachoo
Example 25 If sin π₯ = 3/5 , cos y = β12/13 , where π₯ and y both lie in second quadrant, find the value of sin (π₯ + y). We know that sin (x + y) = sin x cos y + cos x sin y We know that value of sin x and cos y but we do not know of cos x and sin y Let us first find cos x We know that sin2x + cos2x = 1 (3/5)^2+ cos2x = 1 9/25 + cos2x = 1 9/25 + cos2x = 1 cos2x = 1 β 9/25 cos2x = (25 β 9)/25 cos2x = 16/25 cos x = Β± β(16/25) cos x = Β± 4/5 Since x is in llnd Quadrant cos x is negative So, cos x = (βπ)/π Similarly, Finding sin y We know that sin2 y + cos2 y = 1 sin2 y = 1 β cos2 y sin2 y = 1 β ((β12)/13)^2 sin2 y = 1 β 144/169 ("Given cos y =" (β12)/13) sin2 y = (169 β 144)/169 sin2 y = 25/169 sin y = Β± β(25/169) sin y = Β± β((5 Γ 5)/(13 Γ13)) sin y = Β± 5/13 sin y = Β± 5/13 Since y lies in llnd Quadrant So, sin y is positive β΄ sin y = 5/13 Now, Putting value of sin x , sin y, cos x, cos y in sin (x + y) = sin x cos y + cos x sin y = 3/5 Γ ((β12)/13) + ((β4)/5) (5/13) = (β12 Γ 3)/(5 Γ 13) + ((β4 Γ 5)/(5 Γ 13)) = (β36)/65 + ((β20)/65) = (β36 β20)/65 = (β56)/65 Hence, sin (x + y) = (βππ)/ππ