Slide50.JPG

Slide51.JPG
Slide52.JPG
Slide53.JPG
Slide54.JPG


Transcript

Example 20 find the value of tan πœ‹/8. tan 𝝅/πŸ– Putting Ο€ = 180Β° = tan (180Β°)/8 = tan (πŸ’πŸ“Β°)/𝟐 We find tan (45Β°)/2 using tan 2x formula tan 2x = (2 tan⁑π‘₯)/(1 βˆ’π‘‘π‘Žπ‘›2π‘₯) Putting x = (πŸ’πŸ“Β°)/𝟐 tan ("2 Γ— " (45Β°)/2) = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) tan 45Β° = (𝟐 𝒕𝒂𝒏⁑〖 (πŸ’πŸ“Β°)/πŸγ€—)/(𝟏 βˆ’π’•π’‚π’πŸ (πŸ’πŸ“Β°)/𝟐) tan 45Β° = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) 1 = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) 1 – tan2 (45Β°)/2 = 2tan (45Β°)/2 Let tan (πŸ’πŸ“Β°)/𝟐 = x So, our equation becomes 1 – x2 = 2x 0 = 2x + x2 – 1 x2 + 2x – 1 = 0 The above equation is of the form ax2 + bx + c = 0 where a = 1, b = 2, c = βˆ’1 Solution are x = (βˆ’ 𝑏 Β± √(𝑏2 βˆ’4π‘Žπ‘) )/2π‘Ž = (βˆ’ 2 Β± √((βˆ’2)2 βˆ’ 4 Γ— 1 Γ— (βˆ’1)) )/(2 Γ— 1) = (βˆ’2 Β± √(4 + 4))/2 = (βˆ’πŸ Β± βˆšπŸ–)/𝟐 = (βˆ’2 Β± √(2 Γ— 2 Γ— 2))/2 = (βˆ’2 Β± 2√2)/2 = (2 ( βˆ’1 ±√2 ))/2 = –1 Β± √𝟐 Thus, x = –1 Β± √2 tan (πŸ’πŸ“Β°)/𝟐 = –1 Β± √𝟐 But tan (πŸ’πŸ“Β°)/𝟐 = –1 – √𝟐 is not possible as (45Β°)/2 = 22.5Β° lies in first quadrant & tan is positive in first quadrant Therefore, tan (45Β°)/2 = βˆ’1 + √2 i.e. tan 𝝅/πŸ– = √𝟐 – 1

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.