Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6 Important
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13
Example 14
Example 15
Example 16 Important
Example 17 Important
Example 18 Important
Example 19
Example 20 Important You are here
Example 21 Important
Example 22 Important
Question 1 Deleted for CBSE Board 2025 Exams
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Example 20 find the value of tan π/8. tan π /π Putting Ο = 180Β° = tan (180Β°)/8 = tan (ππΒ°)/π We find tan (45Β°)/2 using tan 2x formula tan 2x = (2 tanβ‘π₯)/(1 βπ‘ππ2π₯) Putting x = (ππΒ°)/π tan ("2 Γ " (45Β°)/2) = (2 tanβ‘γ (45Β°)/2γ)/(1 βπ‘ππ2 (45Β°)/2) tan 45Β° = (π πππβ‘γ (ππΒ°)/πγ)/(π βππππ (ππΒ°)/π) tan 45Β° = (2 tanβ‘γ (45Β°)/2γ)/(1 βπ‘ππ2 (45Β°)/2) 1 = (2 tanβ‘γ (45Β°)/2γ)/(1 βπ‘ππ2 (45Β°)/2) 1 β tan2 (45Β°)/2 = 2tan (45Β°)/2 Let tan (ππΒ°)/π = x So, our equation becomes 1 β x2 = 2x 0 = 2x + x2 β 1 x2 + 2x β 1 = 0 The above equation is of the form ax2 + bx + c = 0 where a = 1, b = 2, c = β1 Solution are x = (β π Β± β(π2 β4ππ) )/2π = (β 2 Β± β((β2)2 β 4 Γ 1 Γ (β1)) )/(2 Γ 1) = (β2 Β± β(4 + 4))/2 = (βπ Β± βπ)/π = (β2 Β± β(2 Γ 2 Γ 2))/2 = (β2 Β± 2β2)/2 = (2 ( β1 Β±β2 ))/2 = β1 Β± βπ Thus, x = β1 Β± β2 tan (ππΒ°)/π = β1 Β± βπ But tan (ππΒ°)/π = β1 β βπ is not possible as (45Β°)/2 = 22.5Β° lies in first quadrant & tan is positive in first quadrant Therefore, tan (45Β°)/2 = β1 + β2 i.e. tan π /π = βπ β 1