Learn All Concepts of Chapter 2 Class 11 Relations and Function - FREE. Check - Trigonometry Class 11 - All Concepts




Last updated at Feb. 13, 2020 by Teachoo
Learn All Concepts of Chapter 2 Class 11 Relations and Function - FREE. Check - Trigonometry Class 11 - All Concepts
Transcript
Example 27 find the value of tan π/8. tan π/8 Putting Ο = 180Β° = tan (180Β°)/8 = tan (45Β°)/2 We find tan (45Β°)/2 using tan 2x formula tan 2x = (2 tanβ‘π₯)/(1 βπ‘ππ2π₯) Putting x = (45Β°)/2 tan ("2 Γ " (45Β°)/2) = (2 tanβ‘γ (45Β°)/2γ)/(1 βπ‘ππ2 (45Β°)/2) tan 45Β° = (2 tanβ‘γ (45Β°)/2γ)/(1 βπ‘ππ2 (45Β°)/2) tan 45Β° = (2 tanβ‘γ (45Β°)/2γ)/(1 βπ‘ππ2 (45Β°)/2) 1 = (2 tanβ‘γ (45Β°)/2γ)/(1 βπ‘ππ2 (45Β°)/2) 1 β tan2 (45Β°)/2 = 2tan (45Β°)/2 (As tan 45Β° = 1) Let tan (ππΒ°)/π = x So, our equation becomes 1 β x2 = 2x 0 = 2x + x2 β 1 x2 + 2x β 1 = 0 The above equation is of the form ax2 + bx + c = 0 where a = 1, b = 2, c = β1 Solution are x = (β π Β± β(π2 β4ππ) )/2π = (β 2 Β± β((β2)2 β 4 Γ 1 Γ (β1)) )/(2 Γ 1) = (β2 Β± β(4 + 4))/2 = (β2 Β± β8)/2 = (β2 Β± β(2 Γ 2 Γ 2))/2 = (β2 Β± 2β2)/2 = (2 ( β1 Β±β2 ))/2 = β1 Β± β2 Thus, x = β1 Β± β2 tan (45Β°)/2 = β1 Β± β2 But tan (45Β°)/2 = β1 β β2 is not possible as (45Β°)/2 = 22.5Β° lies in first quadrant & tan is positive in first quadrant Therefore, tan (45Β°)/2 = β1 + β2 i.e. tan π /π = βπ β 1
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6 Important
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13
Example 14
Example 15
Example 16 Important
Example 17 Important
Example 18
Example 19 Important
Example 20
Example 21
Example 22 Important
Example 23
Example 24 Important
Example 25 Important
Example 26 Important
Example 27 Important You are here
Example 28 Important
Example 29 Important
About the Author