# Question 6 - Examples - Chapter 3 Class 11 Trigonometric Functions

Last updated at April 16, 2024 by Teachoo

Examples

Example 1

Example 2 Important

Example 3

Example 4

Example 5 Important

Example 6 Important

Example 7 Important

Example 8

Example 9 Important

Example 10

Example 11 Important

Example 12

Example 13

Example 14

Example 15

Example 16 Important

Example 17 Important

Example 18 Important

Example 19

Example 20 Important

Example 21 Important

Example 22 Important

Question 1 Deleted for CBSE Board 2025 Exams

Question 2 Deleted for CBSE Board 2025 Exams

Question 3 Deleted for CBSE Board 2025 Exams

Question 4 Deleted for CBSE Board 2025 Exams

Question 5 Important Deleted for CBSE Board 2025 Exams

Question 6 Deleted for CBSE Board 2025 Exams You are here

Question 7 Important Deleted for CBSE Board 2025 Exams

Chapter 3 Class 11 Trigonometric Functions

Serial order wise

Last updated at April 16, 2024 by Teachoo

Question 6 Solve sin 2x sin 4x + sin 6x = 0. sin 2x sin 4x + sin 6x = 0 (sin 6x + sin 2x) sin 4x = 0 2 sin ((6 + 2 )/2) cos ((6 2 )/2) sin 4x = 0 2 sin (8 /2) cos (4 /2) sin 4x = 0 2 sin 4x cos (2x) sin 4x = 0 sin 4x (2 cos (2x) 1) = 0 Hence sin 4x = 0 or 2cos 2x 1 = 0 sin 4x = 0 or 2cos 2x = 1 sin 4x = 0 or cos 2x = 1/2 We need to find general solution both separately General solution for sin 4x = 0 Let sin x = sin y sin 4x = sin 4y Given sin 4x = 0 From (1) and (2) sin 4y = 0 sin 4y = sin (0) 4y = 0 y = 0 General solution for sin 4x = sin 4y is 4x = n (-1)n 4y where n Z Put y = 0 4x = n (-1)n 0 4x = n x = /4 where n Z General solution for cos 2x = / Let cos x = cos y cos 2x = cos 2y Given cos 2x = 1/2 From (3) and (4) cos 2y = 1/2 cos (2y) = cos ( /3) 2y = /3 General solution for cos 2x = cos 2y is 2x = 2n 2y where n Z putting 2y = /3 2x = n /3 x = 1/2 (2n /3) x =2 /2 1/2 /3 x = n /6 where n Z Hence General Solution is For sin4x = 0, x = /4 and for cos 2x = 1/2 , x = n /6 where n Z