Example 18 - If sin x = 3/5, cos y = -12/13, find sin (x + y) - Examples

part 2 - Example 18 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 3 - Example 18 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 4 - Example 18 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 5 - Example 18 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions part 6 - Example 18 - Examples - Serial order wise - Chapter 3 Class 11 Trigonometric Functions

Share on WhatsApp

Transcript

Example 18 If sin 𝑥 = 3/5 , cos y = −12/13 , where 𝑥 and y both lie in second quadrant, find the value of sin (𝑥 + y). We know that sin (x + y) = sin x cos y + cos x sin y We know that value of sin x and cos y but we do not know of cos x and sin y Let us first find cos x We know that sin2x + cos2x = 1 (3/5)^2+ cos2x = 1 9/25 + cos2x = 1 9/25 + cos2x = 1 cos2x = 1 – 9/25 cos2x = (25 − 9)/25 cos2x = 16/25 cos x = ± √(16/25) cos x = ± 𝟒/𝟓 Since x is in llnd Quadrant cos x is negative So, cos x = (−𝟒)/𝟓 Similarly, Finding sin y We know that sin2 y + cos2 y = 1 sin2 y = 1 – cos2 y sin2 y = 1 – ((−𝟏𝟐)/𝟏𝟑)^𝟐 sin2 y = 1 – 144/169 sin2 y = (169 − 144)/169 sin2 y = 25/169 sin y = ± √(25/169) sin y = ± √((5 × 5)/(13 ×13)) sin y = ± 5/13 sin y = ± 𝟓/𝟏𝟑 Since y lies in llnd Quadrant So, sin y is positive ∴ sin y = 𝟓/𝟏𝟑 Now, Putting value of sin x , sin y, cos x, cos y in sin (x + y) = sin x cos y + cos x sin y = 𝟑/𝟓 × ((−𝟏𝟐)/𝟏𝟑) + ((−𝟒)/𝟓) (𝟓/𝟏𝟑) = (−12 × 3)/(5 × 13) + ((−4 × 5)/(5 × 13)) = (−36)/65 + ((−20)/65) = (−36 −20)/65 = (−𝟓𝟔)/𝟔𝟓 Hence, sin (x + y) = (−𝟓𝟔)/𝟔𝟓

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo