Check sibling questions


Transcript

Example 29 (Supplementary NCERT) Show that the four points A, B, C and D with position vectors 4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂, −(𝑗 ̂ + 𝑘 ̂), 3𝑖 ̂ + 9𝑗 ̂ + 4𝑘 ̂ & −4𝑖 ̂ + 4𝑗 ̂ + 4𝑘 ̂, respectively coplanar Four points A, B, C, D are coplanar if the three vectors (𝐴𝐵) ⃗ , (𝐴𝐶) ⃗ and (𝐴𝐷) ⃗ are coplanar. i.e. [(𝑨𝑩) ⃗, (𝑨𝑪) ⃗, (𝑨𝑫) ⃗ ] = 0 A (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) B (−𝑗 ̂ − 𝑘 ̂) (𝑨𝑩) ⃗ = (0𝑖 ̂ − 𝑗 ̂ − 𝑘 ̂) − (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) = −4𝒊 ̂ − 6𝒋 ̂ − 2𝒌 ̂ A (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) C (3𝑖 ̂ + 9𝑗 ̂ + 4𝑘 ̂) (𝑨𝑪) ⃗ = (3𝑖 ̂ + 9𝑗 ̂ + 4𝑘 ̂) − (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) = –𝒊 ̂ + 4𝒋 ̂ + 3𝒌 ̂ A (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) D (−4𝑖 ̂ + 4𝑗 ̂ + 4𝑘 ̂) (𝑨𝑫) ⃗ = (−4𝑖 ̂ + 4𝑗 ̂ + 4𝑘 ̂) − (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) = –8𝒊 ̂ − 𝒋 ̂ + 3𝒌 ̂ [(𝐴𝐵) ⃗, (𝐴𝐶) ⃗, (𝐴𝐷) ⃗ ] = |■8(−4&−6&−2@−1&4&3@−8&−1&3)| = −4[(4×3)−(−1×3) ] − (−6) [(−1×3)−(−8×3)] + (−2)[(−1×−1)−(−8×4) ] = –4 [12+3]+6[−3+24]−2[1+32] = −4 (15) + 6 (21) − 2 (33) = −60 + 126 − 66 = −126+ 126 = 0 ∴[(𝐴𝐵) ⃗, (𝐴𝐶) ⃗, (𝐴𝐷) ⃗ ] = 0 Therefore, points A, B, C and D are coplanar.

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo