Check sibling questions


Transcript

Example 30 If with reference to the right handed system of mutually perpendicular unit vectors š‘– Ģ‚, š‘— Ģ‚ and š‘˜ Ģ‚, "α" āƒ— = 3š‘– Ģ‚ āˆ’ š‘— Ģ‚, "β" āƒ— = 2š‘– Ģ‚ + š‘— Ģ‚ – 3š‘˜ Ģ‚, then express "β" Ģ‚ in the form "β" āƒ— = "β" āƒ—1 + "β" āƒ—2, where "β" āƒ—1 is parallel to "α" āƒ— and "β" āƒ—2 is perpendicular to "α" āƒ—.Given š›¼ āƒ— = 3š‘– Ģ‚ āˆ’ š‘— Ģ‚ = 3š‘– Ģ‚ āˆ’ š‘— Ģ‚ + 0š‘˜ Ģ‚ "β" āƒ— = 2š‘– Ģ‚ + š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚ = 2š‘– Ģ‚ + 1š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚ To show: "β" āƒ— = "β" āƒ—1 + "β" āƒ—2 Given, "β" āƒ—1 is parallel to š›¼ āƒ— & "β" āƒ—2 is perpendicular to š›¼ āƒ— Let "β" āƒ—1 = š€šœ¶ āƒ— , šœ† being a scalar. "β" āƒ—1 = šœ† (3š‘– Ģ‚ āˆ’ 1š‘— Ģ‚ + 0š‘˜ Ģ‚) = 3šœ† š‘– Ģ‚ āˆ’ šœ†š‘— Ģ‚ + 0š‘˜ Ģ‚ Now, "β" āƒ—2 = "β" āƒ— āˆ’ "β" āƒ—1 = ["2" š‘– Ģ‚" + 1" š‘— Ģ‚" āˆ’ 3" š‘˜ Ģ‚ ] āˆ’ ["3" šœ†š‘– Ģ‚" āˆ’ šœ†" š‘— Ģ‚" + 0" š‘˜ Ģ‚ ] = 2š‘– Ģ‚ + 1š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚ āˆ’ 3šœ†š‘– Ģ‚ + šœ†š‘— Ģ‚ + 0š‘˜ Ģ‚ = (2 āˆ’ 3šœ†) š‘– Ģ‚ + (1 + šœ†) š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚ Also, since "β" āƒ—2 is perpendicular to š›¼ āƒ— "β" āƒ—2 . šœ¶ āƒ— = 0 ["(2 āˆ’ 3šœ†) " š‘– Ģ‚" + (1 + šœ†) " š‘— Ģ‚" āˆ’ 3" š‘˜ Ģ‚ ]. (3š‘– Ģ‚ āˆ’ 1š‘— Ģ‚ + 0š‘˜ Ģ‚) = 0 (2 āˆ’ "3šœ†") Ɨ 3 + (1 + šœ†) Ɨ āˆ’1 + (āˆ’3) Ɨ 0 = 0 6 āˆ’ 9"šœ†" āˆ’ 1 āˆ’ šœ† = 0 5 āˆ’ 10šœ† = 0 šœ† = 5/10 šœ† = šŸ/šŸ Putting value of šœ† in "β" āƒ—1 and "β" āƒ—2 , "β" āƒ—1 = 3šœ†š‘– Ģ‚ āˆ’ šœ†š‘— Ģ‚ + 0š‘˜ Ģ‚ = 3. 1/2 š‘– Ģ‚ āˆ’ 1/2 š‘— Ģ‚ + 0 š‘˜ Ģ‚ = šŸ‘/šŸ š’Š Ģ‚ āˆ’ šŸ/šŸ š’‹ Ģ‚ "β" āƒ—2 = (2 āˆ’ 3šœ†) š‘– Ģ‚ + (1 + šœ†) š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚ = ("2 āˆ’ 3. " 1/2) š‘– Ģ‚ + (1+1/2) š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚ = šŸ/šŸ š’Š Ģ‚ + šŸ‘/šŸ š’‹ Ģ‚āˆ’ 3š’Œ Ģ‚ "β" āƒ—2 = (2 āˆ’ 3šœ†) š‘– Ģ‚ + (1 + šœ†) š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚ = ("2 āˆ’ 3. " 1/2) š‘– Ģ‚ + (1+1/2) š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚ = šŸ/šŸ š’Š Ģ‚ + šŸ‘/šŸ š’‹ Ģ‚āˆ’ 3š’Œ Ģ‚ Thus, "β" āƒ—1 + "β" āƒ—2 = (šŸ‘/šŸ " " š’Š Ģ‚" āˆ’ " šŸ/šŸ " " š’‹ Ģ‚ )+(šŸ/šŸ " " š’Š Ģ‚" + " šŸ‘/šŸ " " š’‹ Ģ‚āˆ’" 3" š’Œ Ģ‚ ) = 2š‘– Ģ‚ + š‘— Ģ‚ āˆ’ 3š‘˜ Ģ‚ = "β" āƒ— Hence proved

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo