Check sibling questions


Transcript

Example 25 Find the area of a parallelogram whose adjacent sides are given by the vectors (𝑎 ) ⃗ = 3𝑖 ̂ + 𝑗 ̂ + 4𝑘 ̂ and 𝑏 ⃗ = 𝑖 ̂ − 𝑗 ̂ + 𝑘 ̂ Given (𝒂 ) ⃗ = 3𝑖 ̂ + 1𝑗 ̂ + 4𝑘 ̂ 𝒃 ⃗ = 1𝑖 ̂ − 1𝑗 ̂ + 1k ̂ Area of parallelogram ABCD = |𝒂 ⃗ × 𝒃 ⃗ | Now, (𝒂 ) ⃗× 𝒃 ⃗ = |■8(𝑖 ̂&𝑗 ̂&𝑘 ̂@3&1&4@1&−1&1)| = 𝑖 ̂ (1 × 1 – (−1) × 4) − 𝑗 ̂ (3 × 1 – 1 × 4) + 𝑘 ̂ (3 × −1 − 1 × 1) = 𝑖 ̂(1 − (-4)) − j ̂ (3 − 4) + 𝑘 ̂ (−3 −1) = 𝑖 ̂(1 + 4) − j ̂ (−1) + 𝑘 ̂ (−4) = 5𝒊 ̂ + 𝒋 ̂ − 4𝒌 ̂ Magnitude of 𝑎 ⃗ × 𝑏 ⃗ = √(52+1^2+(−4)2) |𝒂 ⃗ × 𝒃 ⃗ | = √(25+1+16) = √𝟒𝟐 Area of parallelogram ABCD = |𝑎 ⃗ × 𝑏 ⃗ | = √42 Therefore, the required area is √𝟒𝟐 .

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo