Check sibling questions


Transcript

Example 24 Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1) as its vertices. Given A (1, 1, 1) , B (1, 2, 3) ,C (2, 3, 1) Area of triangle ABC = 𝟏/𝟐 |(𝑨𝑩) ⃗ × (𝑨𝑪) ⃗ | Finding AB (𝑨𝑩) ⃗ = (1 − 1) 𝑖 ̂ + (2 − 1) 𝑗 ̂ + (3 − 1) 𝑘 ̂ = 0𝑖 ̂ + 1𝑗 ̂ + 2𝑘 ̂ Finding AC (𝑨𝑪) ⃗ = (2 − 1) 𝑖 ̂ + (3 − 1) 𝑗 ̂ + (1 − 1) 𝑘 ̂ = 1𝑖 ̂ + 2𝑗 ̂ + 0𝑘 ̂ (𝑨𝑩) ⃗ × (𝑨𝑪) ⃗ = |■8(𝑖 ̂&𝑗 ̂&𝑘 ̂@0&1&2@1&2&0)| = 𝑖 ̂ [(1×0)−(2×2)] − 𝑗 ̂[(0×0)−(1×2)] + 𝑘 ̂[(0×2)−(1×1)] = −4𝒊 ̂ + 2𝒋 ̂ – 1𝒌 ̂ Magnitude of (𝐴𝐵) ⃗ × (𝐴𝐶) ⃗ = √((−4)2+22+(−1)2) |(𝑨𝑩) ⃗" × " (𝑨𝑪) ⃗ | = √(16+4+1) = √𝟐𝟏 Therefore, Area of triangle ABC = 1/2 |(𝐴𝐵) ⃗" × " (𝐴𝐶) ⃗ | = 1/2 × √21 = √𝟐𝟏/𝟐

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo