Check sibling questions


Transcript

Example 20 For any two vectors 𝑎 ⃗ and 𝑏 ⃗ , we always have |𝑎 ⃗ + 𝑏 ⃗| ≤ |𝑎 ⃗| + |𝑏 ⃗| (triangle inequality).To Prove: |𝑎 ⃗ + 𝑏 ⃗| ≤ |𝑎 ⃗| + |𝑏 ⃗| We first prove trivially, |𝑎 ⃗ + 𝑏 ⃗| = |0 ⃗" + " 𝑏 ⃗ | = |𝑏 ⃗ | "|" 𝑎 ⃗"| + |" 𝑏 ⃗"|" = 0 + |𝑏 ⃗ | = |𝑏 ⃗ | |𝑎 ⃗ + 𝑏 ⃗| = |𝑎 ⃗+0 ⃗ | = |𝑎 ⃗ | "|" 𝑎 ⃗"| + |" 𝑏 ⃗"|" = |𝑎 ⃗ | + 0 = |𝑎 ⃗ | Therefore, the inequality |𝑎 ⃗ + 𝑏 ⃗| ≤ |𝑎 ⃗| + |𝑏 ⃗| is satisfied trivially. Let us assume 𝒂 ⃗ ≠ 𝟎 ⃗ & 𝒃 ⃗ ≠ 𝟎 ⃗ |𝑎 ⃗ + 𝑏 ⃗|2 = (𝑎 ⃗ + 𝑏 ⃗) . (𝑎 ⃗ + 𝑏 ⃗) = 𝑎 ⃗ . 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝒃 ⃗ . 𝒂 ⃗ + 𝑏 ⃗. 𝑏 ⃗ = 𝑎 ⃗ . 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝒂 ⃗ . 𝒃 ⃗ + 𝑏 ⃗. 𝑏 ⃗ = 𝒂 ⃗ . 𝒂 ⃗ + 2𝑎 ⃗. 𝑏 ⃗ + 𝒃 ⃗. 𝒃 ⃗ = |𝒂 ⃗|2 + 2𝑎 ⃗. 𝑏 ⃗ + |𝒃 ⃗|2 = |𝑎 ⃗|2 + 2|𝒂 ⃗||𝒃 ⃗| cos θ + |𝑏 ⃗|2 Thus, |𝑎 ⃗ + 𝑏 ⃗|2 = |𝑎 ⃗|2 + 2|𝑎 ⃗||𝑏 ⃗| cos θ + |𝑏 ⃗|2 (Using prop : 𝑎 ⃗. 𝑎 ⃗ = |𝑎 ⃗|2) (Using prop : 𝑎 ⃗. 𝑎 ⃗ = |𝑎 ⃗|2) We know that cos θ ≤ 1 Multiplying 2|𝑎 ⃗||𝑏 ⃗| on both sides 2|𝒂 ⃗||𝒃 ⃗| cos θ ≤ 2|𝒂 ⃗||𝒃 ⃗| Adding |𝑎 ⃗|2 + |𝑏 ⃗|2 on both sides, |𝒂 ⃗|2 + |𝒃 ⃗|2 + 2|𝒂 ⃗||𝒃 ⃗| cos θ ≤ |𝑎 ⃗|2 + |𝑏 ⃗|2 + 2 |𝑎 ⃗| |𝑏 ⃗| |𝒂 ⃗ + 𝒃 ⃗|2 ≤ (|𝑎 ⃗| + |𝑏 ⃗|) 2 Taking square root both sides |𝑎 ⃗ + 𝑏 ⃗| ≤ (|𝑎 ⃗| + |𝑏 ⃗|) Hence proved.

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo