Last updated at Dec. 16, 2024 by Teachoo
Ex 12.1, 26 (Method 1) Evaluate lim x 0 f(x), where f(x) = 0, , x 0 x=0 Finding limit at x = 0 lim x 0 f(x) = lim x 0 + f(x) = lim x 0 f(x) Thus, lim x 0 f(x) = 1 & lim x 0 + f(x) = 1 Since 1 1 So, f(x) + f(x) So, left hand limit & right hand limit are not equal Hence, f(x) does not exist Ex13.1, 26 (Method 2) Evaluate lim x 0 f(x), where f(x) = x x 0, , x 0 x=0 We know that lim x a f(x) exist only if lim x f(x) = lim x + f(x) Similarly in this question we have find limits First we have to prove limit exists by proving lim x 0 + f(x) = lim x 0 f(x) For + f(x) f(x) = x So, as x tends to 0, f(x) tends to 1 0 + f(x) = 1 For f(x) f(x) = x So, as x tends to 0, f(x) tends to 1 0 f(x) = 1 Thus, lim x 0 f(x) = 1 & lim x 0 + f(x) = 1 Since 1 1 So, f(x) + f(x) So, left hand limit & right hand limit are not equal Hence, f(x) does not exist
Ex 12.1
Ex 12.1, 2
Ex 12.1, 3
Ex 12.1, 4 Important
Ex 12.1, 5
Ex 12.1, 6 Important
Ex 12.1, 7
Ex 12.1, 8 Important
Ex 12.1, 9
Ex 12.1,10 Important
Ex 12.1, 11
Ex 12.1, 12
Ex 12.1, 13
Ex 12.1, 14 Important
Ex 12.1, 15 Important
Ex 12.1, 16
Ex 12.1, 17 Important
Ex 12.1, 18
Ex 12.1, 19 Important
Ex 12.1, 20
Ex 12.1, 21 Important
Ex 12.1, 22 Important
Ex 12.1, 23
Ex 12.1, 24
Ex 12.1, 25 Important
Ex 12.1, 26 You are here
Ex 12.1, 27
Ex 12.1, 28 Important
Ex 12.1, 29
Ex 12.1, 30 Important
Ex 12.1, 31
Ex 12.1, 32 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo