Maths Crash Course - Live lectures + all videos + Real time Doubt solving!

Miscellaneous

Misc 1 (i)

Misc 1 (ii)

Misc 1 (iii) Important

Misc 2 (i)

Misc 2 (ii) Important

Misc 2 (iii)

Misc 2 (iv) Important

Misc 3 Deleted for CBSE Board 2023 Exams

Misc 4 Important

Misc 5 Important Deleted for CBSE Board 2023 Exams

Misc 6

Misc 7 Important

Misc 8

Misc 9 Important You are here

Misc 10 Important

Misc 11

Misc 12 Important

Misc 13

Misc 14 Important

Misc 15 Important

Misc 16 (MCQ)

Misc 17 (MCQ) Important

Misc 18 (MCQ)

Chapter 9 Class 12 Differential Equations

Serial order wise

Last updated at Dec. 11, 2019 by Teachoo

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!

Misc 9 Find the particular solution of the differential equation (1 + 𝑒^2𝑥) dy + (1 + 𝑦^2) ex dx = 0, given that y = 1 when x = 0. Given (1 + e2x) dy + (1 + y2)𝑒^𝑥 dx = 0 (1 + e2x) dy = −(1 + y2)𝑒^𝑥 dx 𝑑𝑦/𝑑𝑥 = (−(1 + 𝑦^2 ).𝑒^𝑥)/(1 + 𝑒2𝑥) 𝑑𝑦/(1 + 𝑦)^2 = (−𝑒^𝑥 𝑑𝑥)/(1 + 𝑒2𝑥) Integrating both sides ∫1▒𝑑𝑦/〖(1 + 𝑦)〗^2 = ∫1▒(𝑒𝑥 𝑑𝑥)/〖1 + 𝑒〗^2𝑥 …(1) Let t = ex Diff w.r.t.x 𝑑𝑡/𝑑𝑥=𝑒^𝑥 𝑑𝑡/𝑒𝑥= 𝑑𝑥 ∴ Our equation becomes ∫1▒𝑑𝑦/〖1 + 𝑦〗^2 = −∫1▒〖(𝑒𝑥 )/(1 + 𝑡^2 ) (𝑑𝑡 )/(𝑒𝑥 )〗 ∫1▒𝑑𝑦/〖1 + 𝑦〗^2 = −∫1▒〖(𝑑𝑡 )/(1 + 𝑡^2 ) 〗 tan^(−1)𝑦=−tan^(−1)𝑡+𝐶 Putting back value of t = ex 〖𝒕𝒂𝒏〗^(−𝟏)𝒚=−〖𝒕𝒂𝒏〗^(−𝟏)(𝒆^𝒙 )+𝑪 (As ∫1▒𝑑𝑥/〖1 + 𝑥〗^2 =tan^(−1)𝑥) …(2) Given that y = 1 when x = 0 Put y = 1 and x = 0 in equation (2) tan^(−1)〖(1)〗=−tan^(−1)(𝒆^𝟎 )+𝐶 tan^(−1)1=−tan^(−1)𝟏+𝐶 tan^(−1)1+tan^(−1)1=𝐶 2 〖𝒕𝒂𝒏〗^(−𝟏)𝟏=𝐶 2 × 𝝅/𝟒=𝐶 2 × 𝜋/2=𝐶 C = 𝜋/2. Putting value of C in (2) tan^(−1)𝑦=−tan^(−1)(𝑒^𝑥 )+𝐶 tan^(−1)𝑦=−tan^(−1)(𝑒^𝑥 )+" " 𝜋/2 〖𝒕𝒂𝒏〗^(−𝟏)𝒚+〖𝒕𝒂𝒏〗^(−𝟏)(𝒆^𝒙 )=" " 𝝅/𝟐 is the required particular solution.