

Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 1 (ii)
Misc 1 (iii) Important
Misc 2 (i)
Misc 2 (ii) Important You are here
Misc 2 (iii)
Misc 2 (iv) Important
Misc 3 Deleted for CBSE Board 2023 Exams
Misc 4 Important
Misc 5 Important Deleted for CBSE Board 2023 Exams
Misc 6
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10 Important
Misc 11
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16 (MCQ)
Misc 17 (MCQ) Important
Misc 18 (MCQ)
Last updated at March 16, 2023 by Teachoo
Misc 2 For each of the exercise given below , verify that the given function (ππππππππ‘ ππ ππ₯ππππππ‘) is a solution of the corresponding differential equation . (ii) π¦=π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ ) : (π^2 π¦)/(ππ₯^2 )β2 ππ¦/ππ₯+2π¦=0 π¦=π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ ) : Differentiating w.r.t. x π¦^β²=[π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ )]^β² π¦^β²=γ(πγ^π₯)β² (π cosβ‘γπ₯+π sinβ‘π₯ γ )+π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ )β² π¦^β²=π^π (π πππβ‘γπ+π πππβ‘π γ )+π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ ) Putting π¦=π^π₯ (π πππ β‘γπ₯+π π ππβ‘π₯ γ ) : π¦^β²=π+π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ ) π¦^β²βπ¦=π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ ) Differentiating again w.r.t x π¦^β²β²βπ¦^β²=[π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )]^β² π¦^β²β²βπ¦^β²=γ(πγ^π₯)β²(βπ sinβ‘γπ₯+π cosβ‘π₯ γ )+π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )β² π¦^β²β²βπ¦^β²=π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )+π^π₯ (βπ cosβ‘γπ₯βπ siπβ‘π₯ γ ) π¦^β²β²βπ¦^β²=π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )βπ^π₯ (π cosβ‘γπ₯+π siπβ‘π₯ γ ) Putting π¦=π^π₯ (π πππ β‘γπ₯+π π ππβ‘π₯ γ ) π¦^β²β²βπ¦^β²=π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )βπ¦ Putting π¦^β²βπ¦=π^π₯ (βπ π ππβ‘γπ₯+π πππ β‘π₯ γ ) from (1) β¦(1) π¦^β²β²βπ¦^β²=π¦^β²βπ¦βπ¦ π¦^β²β²βπ¦^β²=π¦^β²β2π¦ π¦^β²β²βπ¦^β²βπ¦^β²+2π¦=0 π¦^β²β²β2π¦^β²+2π¦=0 (π^2 π¦)/(ππ₯^2 )β2 ππ¦/ππ₯+2π¦=0 Thus, Given Function is a solution of the Differential Equation