Check sibling questions

Misc 4 - Prove x2 - y2 = c(x2 + y2)2 is general solution of

Misc 4 - Chapter 9 Class 12 Differential Equations - Part 2
Misc 4 - Chapter 9 Class 12 Differential Equations - Part 3 Misc 4 - Chapter 9 Class 12 Differential Equations - Part 4 Misc 4 - Chapter 9 Class 12 Differential Equations - Part 5 Misc 4 - Chapter 9 Class 12 Differential Equations - Part 6 Misc 4 - Chapter 9 Class 12 Differential Equations - Part 7 Misc 4 - Chapter 9 Class 12 Differential Equations - Part 8 Misc 4 - Chapter 9 Class 12 Differential Equations - Part 9 Misc 4 - Chapter 9 Class 12 Differential Equations - Part 10

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Misc 3 Prove that 𝑥^2−𝑦^2=𝑐(𝑥^2+𝑦^2 )^2 is the general solution of differential equation (𝑥^3−3𝑥𝑦^2 )𝑑𝑥=(𝑦^3−3𝑥^2 𝑦)𝑑𝑦, where 𝑐 is a parameter . Given differential equation (𝑥^3−3𝑥𝑦^2 )𝑑𝑥=(𝑦^3−3𝑥^2 𝑦)𝑑𝑦 (𝑥^3 − 3𝑥𝑦^2)/(𝑦^3 − 3𝑥^2 𝑦)=𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥=(𝑥^3 − 3𝑥𝑦^2)/(𝑦^(3 )− 3𝑥^2 𝑦) 𝑑𝑦/𝑑𝑥=(𝑥^3 (1 − (3𝑥𝑦^2)/𝑥^3 ))/(𝑦^(3 ) (1 −(3𝑥^2 𝑦)/𝑦^3 ) ) 𝑑𝑦/𝑑𝑥=(𝑥^3 (1 − (3𝑦^2)/𝑥^2 ))/(𝑦^(3 ) (1 −(3𝑥^2)/𝑦^2 ) ) 𝑑𝑦/𝑑𝑥=(𝑥/𝑦)^3×((1 − 3(𝑦/𝑥)^2 ))/((1 − 3(𝑥/𝑦)^2 ) ) Putting y = vx. Differentiating w.r.t. x 𝑑𝑦/𝑑𝑥 = 𝑥 𝑑𝑣/𝑑𝑥 + 𝑣 Putting value of 𝑑𝑦/𝑑𝑥 and y = vx in (1) 𝑥 𝑑𝑣/𝑑𝑥+𝑣 =(1/𝑣)^3×((1 − 3𝑣^2 ))/((1 − 3(1/𝑣)^2 ) ) …(1) 𝑥 𝑑𝑣/𝑑𝑥+𝑣 =1/𝑣^3 ×((1 − 3𝑣^2 ))/(((𝑣^2 − 3)/𝑣^2 ) ) 𝑥 𝑑𝑣/𝑑𝑥+𝑣 =1/𝑣×((1 − 3𝑣^2 ))/((𝑣^2 − 3) ) 𝑥 𝑑𝑣/𝑑𝑥=1/𝑣×((1 − 3𝑣^2 ))/((𝑣^2 − 3) )−𝑣 𝑥 𝑑𝑣/𝑑𝑥=1/𝑣×((1 − 3𝑣^2 ) − 𝑣 × 𝑣 (𝑣^2 − 3))/((𝑣^2 − 3) ) 𝑥 𝑑𝑣/𝑑𝑥=1/𝑣×(1 − 3𝑣^2 − 𝑣^4 + 3𝑣^2)/((𝑣^2 − 3) ) 𝑥 𝑑𝑣/𝑑𝑥=1/𝑣×(1 − 𝑣^4)/((𝑣^2 − 3) ) 𝑥 𝑑𝑣/𝑑𝑥=(1 − 𝑣^4)/((𝑣^3 − 3𝑣) ) (𝑣^3 −3𝑣)𝑑𝑣/((1 −𝑣^4 ) )=𝑑𝑥/𝑥 Integrating Both Sides ∫1▒〖(𝑣^3 −3𝑣 )/(1 − 𝑣^4 ) 𝑑𝑣〗=∫1▒𝑑𝑥/𝑥 ∫1▒〖(𝑣^3 −3𝑣 )/(1 − 𝑣^4 ) 𝑑𝑣〗=log⁡〖|𝑥|〗+𝐶 Let I = ∫1▒(𝑣^3 − 3𝑣)/(1 − 𝑣^4 ) 𝑑𝑣 Therefore, 𝐼 =log⁡〖|𝑥|+𝑐〗 …(1) Solving 𝑰 𝐼 =∫1▒〖(𝑣^3 −3𝑣 )/(1 − 𝑣^4 ) 𝑑𝑣〗 =∫1▒〖(𝑣^3 )/(1 − 𝑣^4 )−3∫1▒〖𝑣/(1 −〖 𝑣〗^4 ) 𝑑𝑣〗〗 𝐼 =∫1▒〖𝑣^3/(−𝑡) 𝑑𝑡/(4𝑣^3 ) −3∫1▒〖𝑣/(1 − 𝑝^2 ) 𝑑𝑝/2𝑣〗〗 Put 𝑣^4−1=𝑡 Diff. w.r.t. 𝑣 𝑑/𝑑𝑣 (𝑣^4−1)=𝑑𝑡/𝑑𝑣 4𝑣^3=𝑑𝑡/𝑑𝑣 𝑑𝑣=𝑑𝑡/(4𝑣^3 ) Put 𝑝=𝑣^2 Diff. w.r.t. 𝑣 𝑑𝑝/𝑑𝑣=2𝑣 𝑑𝑝/2𝑣=𝑑𝑣 …(2) 𝐼 =−1/4 ∫1▒〖 𝑑𝑡/𝑡−3/2 ∫1▒〖 𝑑𝑝/(1 − 𝑝^2 )〗〗 𝐼 =−1/4 ∫1▒〖 𝑑𝑡/𝑡+3/2 ∫1▒〖 𝑑𝑝/((𝑝^2 − 1^2 ) )〗〗 𝐼 = (−1)/( 4) log⁡𝑡+3/2 × 1/(2(1)) 𝑙𝑜𝑔((𝑝 − 1)/(𝑝 + 1)) Putting t = 𝑣^4 − 1 and p = v2 I = (−1)/4 log⁡〖(𝑣^4−1) 〗+3/4 log⁡〖((𝑣^2 − 1))/((𝑣^2 + 1))〗 I = 1/4 [−log⁡〖(𝑣^4−1)+3 𝑙𝑜𝑔 ((𝑣^2 − 1))/((𝑣^2 + 1))〗 ] I = 1/4 [−log⁡〖(𝑣^4−1)+ 𝑙𝑜𝑔 (𝑣^2 − 1)^3/(𝑣^2 + 1)^3 〗 ] I = 1/4 [𝑙𝑜𝑔 (𝑣^2 − 1)^3/(𝑣^2 + 1)^3 × 1/((𝑣^4 − 1))] (∫1▒〖𝑑𝑥/(𝑥^2 − 𝑎^2 )=1/2𝑎 𝑙𝑜𝑔((𝑥 − 𝑎)/(𝑥 + 𝑎)) 〗) I = 1/4 [log⁡〖1/((𝑣^4−1) )+ 𝑙𝑜𝑔 (𝑣^2 − 1)^3/(𝑣^2 + 1)^3 〗 ] I = 1/4 𝑙𝑜𝑔 1/((𝑣^4 − 1))×(𝑣^2 − 1)^3/(𝑣^2 + 1)^3 I = 1/4 𝑙𝑜𝑔 1/((𝑣^2 − 1)(𝑣^2 + 1))×(𝑣^2 − 1)^3/(𝑣^2 + 1)^3 I = 1/4 𝑙𝑜𝑔 (𝑣^2 − 1)^2/(𝑣^2 + 1)^4 I = 1/4 log⁡〖(((𝑣^2 − 1))/(𝑣^2 + 1)^2 )^2 〗 I = 1/4 × 2 log⁡〖((𝑣^2 − 1))/(𝑣^2 + 1)^2 〗 I = 1/2 log⁡〖((𝑣^2 − 1))/(𝑣^2 + 1)^2 〗 Putting back v = 𝑦/𝑥 I = 1/2 log⁡〖(((𝑦/𝑥)^2 − 1))/((𝑦/𝑥)^2 + 1)^2 〗 I = 1/2 log (((𝑦^2 − 𝑥2)/𝑥^2 )/((𝑦^2 + 𝑥2)/𝑥^2 )^2 ) I = 1/2 log [(𝑥2(𝑦^2 − 𝑥^2))/(𝑦^2 + 𝑥^2 )^2 ] Substituting value of I in (2) I = log |x| + c 1/2 log ⌈(𝑥2(𝑦2 − 𝑥2))/((𝑦2 + 𝑥2))⌉ = log |x| + c log ⌈(𝑥2(𝑦2 − 𝑥2))/((𝑥2 + 𝑦2))⌉ = 2 log |x| + 2c log ⌈(𝑥2(𝑦2 − 𝑥2))/((𝑥2 + 𝑦2))⌉ = log |x|2 + log c1 log ⌈(𝑥2(𝑦2 − 𝑥2))/((𝑥2 + 𝑦2))⌉ = log |x|2 + log c1 log ⌈(𝑥2(𝑦2 − 𝑥2))/(𝑥2 + 𝑦2)^2 ⌉ = log c1|x|2 Cancelling log (𝑥2(𝑦2 − 𝑥2))/(𝑥2 + 𝑦2)^2 = c1 x2 x2 (y2 − x2) = c1 x2 (x2 + y2)2 Cancelling x2 from both sides y2 − x2 = c1 (x2 + y2)2 x2 − y2 = c2 (x2 + y2)2 Hence proved

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.