Slide15.JPG Slide16.JPG Slide17.JPG Slide18.JPG Slide19.JPG Slide20.JPG Slide21.JPG Slide22.JPG Slide23.JPG Slide24.JPG

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Misc 3 Prove that ๐‘ฅ^2โˆ’๐‘ฆ^2=๐‘(๐‘ฅ^2+๐‘ฆ^2 )^2 is the general solution of differential equation (๐‘ฅ^3โˆ’3๐‘ฅ๐‘ฆ^2 )๐‘‘๐‘ฅ=(๐‘ฆ^3โˆ’3๐‘ฅ^2 ๐‘ฆ)๐‘‘๐‘ฆ, where ๐‘ is a parameter .Given differential equation (๐‘ฅ^3โˆ’3๐‘ฅ๐‘ฆ^2 )๐‘‘๐‘ฅ=(๐‘ฆ^3โˆ’3๐‘ฅ^2 ๐‘ฆ)๐‘‘๐‘ฆ (๐‘ฅ^3 โˆ’ 3๐‘ฅ๐‘ฆ^2)/(๐‘ฆ^3 โˆ’ 3๐‘ฅ^2 ๐‘ฆ)=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘ฅ^3 โˆ’ 3๐‘ฅ๐‘ฆ^2)/(๐‘ฆ^(3 )โˆ’ 3๐‘ฅ^2 ๐‘ฆ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘ฅ^3 (1 โˆ’ (3๐‘ฅ๐‘ฆ^2)/๐‘ฅ^3 ))/(๐‘ฆ^(3 ) (1 โˆ’(3๐‘ฅ^2 ๐‘ฆ)/๐‘ฆ^3 ) ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘ฅ^3 (1 โˆ’ (3๐‘ฆ^2)/๐‘ฅ^2 ))/(๐‘ฆ^(3 ) (1 โˆ’(3๐‘ฅ^2)/๐‘ฆ^2 ) ) ๐’…๐’š/๐’…๐’™=(๐’™/๐’š)^๐Ÿ‘ร—((๐Ÿ โˆ’ ๐Ÿ‘(๐’š/๐’™)^๐Ÿ ))/((๐Ÿ โˆ’ ๐Ÿ‘(๐’™/๐’š)^๐Ÿ ) ) Putting y = vx. Differentiating w.r.t. x ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + ๐‘ฃ Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ =(1/๐‘ฃ)^3ร—((1 โˆ’ 3๐‘ฃ^2 ))/((1 โˆ’ 3(1/๐‘ฃ)^2 ) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ =1/๐‘ฃ^3 ร—((1 โˆ’ 3๐‘ฃ^2 ))/(((๐‘ฃ^2 โˆ’ 3)/๐‘ฃ^2 ) ) ๐’™ ๐’…๐’—/๐’…๐’™+๐’— =๐Ÿ/๐’—ร—((๐Ÿ โˆ’ ๐Ÿ‘๐’—^๐Ÿ ))/((๐’—^๐Ÿ โˆ’ ๐Ÿ‘) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—((1 โˆ’ 3๐‘ฃ^2 ))/((๐‘ฃ^2 โˆ’ 3) )โˆ’๐‘ฃ ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—((1 โˆ’ 3๐‘ฃ^2 ) โˆ’ ๐‘ฃ ร— ๐‘ฃ (๐‘ฃ^2 โˆ’ 3))/((๐‘ฃ^2 โˆ’ 3) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—(1 โˆ’ 3๐‘ฃ^2 โˆ’ ๐‘ฃ^4 + 3๐‘ฃ^2)/((๐‘ฃ^2 โˆ’ 3) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—(1 โˆ’ ๐‘ฃ^4)/((๐‘ฃ^2 โˆ’ 3) ) ๐’™ ๐’…๐’—/๐’…๐’™=(๐Ÿ โˆ’ ๐’—^๐Ÿ’)/((๐’—^๐Ÿ‘ โˆ’ ๐Ÿ‘๐’—) ) (๐’—^๐Ÿ‘ โˆ’๐Ÿ‘๐’—)๐’…๐’—/((๐Ÿ โˆ’๐’—^๐Ÿ’ ) )=๐’…๐’™/๐’™ Integrating Both Sides โˆซ1โ–’ใ€–(๐‘ฃ^3 โˆ’3๐‘ฃ )/(1 โˆ’ ๐‘ฃ^4 ) ๐‘‘๐‘ฃใ€—=โˆซ1โ–’๐‘‘๐‘ฅ/๐‘ฅ โˆซ1โ–’ใ€–(๐’—^๐Ÿ‘ โˆ’๐Ÿ‘๐’— )/(๐Ÿ โˆ’ ๐’—^๐Ÿ’ ) ๐’…๐’—ใ€—=๐ฅ๐จ๐ โกใ€–|๐’™|ใ€—+๐‘ช Let I = โˆซ1โ–’(๐’—^๐Ÿ‘ โˆ’ ๐Ÿ‘๐’—)/(๐Ÿ โˆ’ ๐’—^๐Ÿ’ ) ๐’…๐’— Therefore, ๐ผ =logโกใ€–|๐‘ฅ|+๐‘ใ€— Solving ๐‘ฐ ๐ผ =โˆซ1โ–’ใ€–(๐‘ฃ^3 โˆ’3๐‘ฃ )/(1 โˆ’ ๐‘ฃ^4 ) ๐‘‘๐‘ฃใ€— =โˆซ1โ–’ใ€–(๐‘ฃ^3 )/(1 โˆ’ ๐‘ฃ^4 )โˆ’3โˆซ1โ–’ใ€–๐‘ฃ/(1 โˆ’ใ€– ๐‘ฃใ€—^4 ) ๐‘‘๐‘ฃใ€—ใ€— Put ๐’—^๐Ÿ’โˆ’๐Ÿ=๐’• Diff. w.r.t. ๐‘ฃ ๐‘‘/๐‘‘๐‘ฃ (๐‘ฃ^4โˆ’1)=๐‘‘๐‘ก/๐‘‘๐‘ฃ 4๐‘ฃ^3=๐‘‘๐‘ก/๐‘‘๐‘ฃ ๐‘‘๐‘ฃ=๐‘‘๐‘ก/(4๐‘ฃ^3 ) Put ๐’‘=๐’—^๐Ÿ Diff. w.r.t. ๐‘ฃ ๐‘‘๐‘/๐‘‘๐‘ฃ=2๐‘ฃ ๐‘‘๐‘/2๐‘ฃ=๐‘‘๐‘ฃ ๐‘ฐ =โˆซ1โ–’ใ€–๐’—^๐Ÿ‘/(โˆ’๐’•) ๐’…๐’•/(๐Ÿ’๐’—^๐Ÿ‘ ) โˆ’๐Ÿ‘โˆซ1โ–’ใ€–๐’—/(๐Ÿ โˆ’ ๐’‘^๐Ÿ ) ๐’…๐’‘/๐Ÿ๐’—ใ€—ใ€— ๐ผ =โˆ’1/4 โˆซ1โ–’ใ€– ๐‘‘๐‘ก/๐‘กโˆ’3/2 โˆซ1โ–’ใ€– ๐‘‘๐‘/(1 โˆ’ ๐‘^2 )ใ€—ใ€— ๐ผ =โˆ’1/4 โˆซ1โ–’ใ€– ๐‘‘๐‘ก/๐‘ก+3/2 โˆซ1โ–’ใ€– ๐‘‘๐‘/((๐‘^2 โˆ’ 1^2 ) )ใ€—ใ€— ๐‘ฐ = (โˆ’๐Ÿ)/( ๐Ÿ’) ๐ฅ๐จ๐ โก๐’•+๐Ÿ‘/๐Ÿ ร— ๐Ÿ/(๐Ÿ(๐Ÿ)) ๐’๐’๐’ˆ((๐’‘ โˆ’ ๐Ÿ)/(๐’‘ + ๐Ÿ)) Putting t = ๐‘ฃ^4 โˆ’ 1 and p = v2 I = (โˆ’๐Ÿ)/๐Ÿ’ ๐ฅ๐จ๐ โกใ€–(๐’—^๐Ÿ’โˆ’๐Ÿ) ใ€—+๐Ÿ‘/๐Ÿ’ ๐ฅ๐จ๐ โกใ€–((๐’—^๐Ÿ โˆ’ ๐Ÿ))/((๐’—^๐Ÿ + ๐Ÿ))ใ€— I = 1/4 [โˆ’logโกใ€–(๐‘ฃ^4โˆ’1)+3 ๐‘™๐‘œ๐‘” ((๐‘ฃ^2 โˆ’ 1))/((๐‘ฃ^2 + 1))ใ€— ] I = 1/4 [โˆ’๐’๐จ๐ โกใ€–(๐’—^๐Ÿ’โˆ’๐Ÿ)+ ๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 ใ€— ] I = 1/4 [๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 ร— 1/((๐‘ฃ^4 โˆ’ 1))] I = 1/4 [๐’๐’๐’ˆโกใ€–๐Ÿ/((๐’—^๐Ÿ’โˆ’๐Ÿ) )+ ๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 ใ€— ] I = 1/4 ๐’๐’๐’ˆ ๐Ÿ/((๐’—^๐Ÿ’ โˆ’ ๐Ÿ))ร—(๐’—^๐Ÿ โˆ’ ๐Ÿ)^๐Ÿ‘/(๐’—^๐Ÿ + ๐Ÿ)^๐Ÿ‘ I = 1/4 ๐‘™๐‘œ๐‘” 1/((๐‘ฃ^2 โˆ’ 1)(๐‘ฃ^2 + 1))ร—(๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 I = 1/4 ๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^2/(๐‘ฃ^2 + 1)^4 I = ๐Ÿ/๐Ÿ’ ๐ฅ๐จ๐ โกใ€–(((๐’—^๐Ÿ โˆ’ ๐Ÿ))/(๐’—^๐Ÿ + ๐Ÿ)^๐Ÿ )^๐Ÿ ใ€— I = 1/4 ร— 2 logโกใ€–((๐‘ฃ^2 โˆ’ 1))/(๐‘ฃ^2 + 1)^2 ใ€— I = ๐Ÿ/๐Ÿ ๐’๐’๐’ˆโกใ€–((๐’—^๐Ÿ โˆ’ ๐Ÿ))/(๐’—^๐Ÿ + ๐Ÿ)^๐Ÿ ใ€— Putting back v = ๐‘ฆ/๐‘ฅ I = 1/2 logโกใ€–(((๐‘ฆ/๐‘ฅ)^2 โˆ’ 1))/((๐‘ฆ/๐‘ฅ)^2 + 1)^2 ใ€— I = 1/2 log (((๐‘ฆ^2 โˆ’ ๐‘ฅ2)/๐‘ฅ^2 )/((๐‘ฆ^2 + ๐‘ฅ2)/๐‘ฅ^2 )^2 ) I = ๐Ÿ/๐Ÿ log [(๐’™๐Ÿ(๐’š^๐Ÿ โˆ’ ๐’™^๐Ÿ))/(๐’š^๐Ÿ + ๐’™^๐Ÿ )^๐Ÿ ] Substituting value of I in (2) I = log |x| + c ๐Ÿ/๐Ÿ log โŒˆ(๐’™๐Ÿ(๐’š๐Ÿ โˆ’ ๐’™๐Ÿ))/((๐’š๐Ÿ + ๐’™๐Ÿ))โŒ‰ = log |x| + c log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/((๐‘ฅ2 + ๐‘ฆ2))โŒ‰ = 2 log |x| + 2c log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/((๐‘ฅ2 + ๐‘ฆ2))โŒ‰ = log |x|2 + log c1 log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/((๐‘ฅ2 + ๐‘ฆ2))โŒ‰ = log |x|2 + log c1 log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/(๐‘ฅ2 + ๐‘ฆ2)^2 โŒ‰ = log c1|x|2 Cancelling log (๐’™๐Ÿ(๐’š๐Ÿ โˆ’ ๐’™๐Ÿ))/(๐’™๐Ÿ + ๐’š๐Ÿ)^๐Ÿ = c1 x2 x2 (y2 โˆ’ x2) = c1 x2 (x2 + y2)2 Cancelling x2 from both sides y2 โˆ’ x2 = c1 (x2 + y2)2 x2 โˆ’ y2 = c2 (x2 + y2)2 Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo