


Miscellaneous
Misc 1 (ii)
Misc 1 (iii) Important
Misc 2 (i)
Misc 2 (ii) Important
Misc 2 (iii)
Misc 2 (iv) Important
Misc 3 Deleted for CBSE Board 2022 Exams
Misc 4 Important
Misc 5 Important Deleted for CBSE Board 2022 Exams
Misc 6
Misc 7 Important You are here
Misc 8
Misc 9 Important
Misc 10 Important
Misc 11
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16 (MCQ)
Misc 17 (MCQ) Important Deleted for CBSE Board 2022 Exams
Misc 18 (MCQ)
Last updated at Dec. 11, 2019 by Teachoo
Misc 7 Show that the general solution of the differential equation ππ¦/ππ₯+(π¦^2+π¦+1)/(π₯^2+π₯+1)=0 is given by (π₯+π¦+1)=A(1βπ₯βπ¦β2π₯π¦), where A is parameter. ππ¦/ππ₯+(π¦^2 + π¦ + 1)/(π₯^2 + π₯ + 1) = 0 ππ¦/ππ₯=(β(π¦^2 + π¦ + 1))/(π₯^2 + π₯ + 1) ππ¦/(π¦^2 + π¦ + 1)=(βππ₯)/(π₯^2 + π₯ + 1) ππ¦/(π¦^2 +2(1/2)π¦ + (1/2)^2β (1/2)^2+ 1)=(βππ₯)/(π₯^2 + 2(1/2)π₯ + (1/2)^2β (1/2)^2+ 1) ππ¦/((π¦ + 1/2)^2+ 3/4)=(βππ₯)/((π₯ + 1/2)^2+ 3/4) ππ¦/((π¦ + 1/2)^2+ (β3/2)^2 )=(βππ₯)/((π₯ + 1/2)^2+ (β3/2)^2 ) Integrating both sides β«1βππ¦/((π¦ + 1/2)^2 +(β3/2)^2 ) = β β«1βππ₯/((π₯ + 1/2)^2 +(β3/2)^2 ) 2/β3 tanβ1 ((π¦ + 1/2)/(β3/2)) = (β2)/β3 tanβ1 ((π₯ + 1/2)/(β3/2)) + C 2/β3 ["tanβ1 " ((2π¦ + 1)/β3)" + tanβ1 " ((2π₯ + 1)/β3)] = C (β«1βππ₯/(π₯^2 + π^2 )=1/π "tanβ1" π₯/π) (Using tanβ1 A + tanβ1 B = tanβ1 ((π΄ + π΅)/(1 β π΄π΅)) ) 2/β3 "tanβ1" β((2π¦ + 1)/β3 + (2π₯ + 1)/β3)/(1 β (2π¦ β 1)/β3 Γ(2π₯ + 1)/β3 )β=πΆ "tanβ1" [((2π¦ + 1 + 2π₯ + 1)/β3)/(1 β ((2π¦ + 1)(2π₯ + 1))/β3)] = β3/2 πΆ ((2π¦ + 1 + 2π₯ + 1)/β3)/(1 β ((2π¦ + 1)(2π₯ + 1))/3) = tan (β3/2 πΆ) ((2π¦ + 2π₯ +2)/β3)/((3 β (2π¦ + 1)(2π₯ + 1))/3) = C1 (Where C1 = tan (β3/2 πΆ)) (β3(2π¦ + 2π₯ + 2))/(3 β (4π₯π¦ + 2π¦ + 2π₯ + 1) ) = C 2β3 (x + y + 1) = C1 |3β4π₯π¦β2π₯β2π¦β1| 2β3 (x + y + 1) = C1 |2β4π₯π¦β2π₯β2π¦| 2β3 (x + y + 1) = C1 Γ 2 |1βπ₯βπ¦βπ₯π¦| βπ (x + y + 1) = C1 ( 1 β x β y β 2xy) is the required general solution