Slide4.JPG Slide5.JPG Slide6.JPG

 

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Misc 2 For each of the exercise given below , verify that the given function (𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑜𝑟 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡) is a solution of the corresponding differential equation . (i) 𝑥𝑦=𝑎 𝑒^𝑥+𝑏 𝑒^(−𝑥)+𝑥^2 : 𝑥 (𝑑^2 𝑦)/(𝑑𝑥^2 )+2 𝑑𝑦/𝑑𝑥−𝑥𝑦+𝑥^2−2=0 𝑥𝑦=𝑎𝑒^𝑥+𝑏 𝑒^(−𝑥)+𝑥^2 Differentiating w.r.t x (𝑑(𝑥𝑦))/𝑑𝑥=𝑑/𝑑𝑥 [𝑎 𝑒^𝑥+𝑏 𝑒^(−𝑥)+𝑥^2 ] 𝑑𝑥/𝑑𝑥 y+𝑑𝑦/𝑑𝑥 𝑥 =𝑎〖 𝑒〗^𝑥+(−1)𝑏 𝑒^(−𝑥)+2𝑥 𝒚+𝒚^′ 𝒙 =𝒂〖 𝒆〗^𝒙−𝒃 𝒆^(−𝒙)+𝟐𝒙 Differentiating again w.r.t x 𝑦′+(𝑦^′ 𝑥)^′ =(𝑎𝑒^𝑥 )^′−(𝑏𝑒^(−𝑥) )^′+(2𝑥)^′ 𝑦^′+(𝑦^′′ 𝑥+𝑦^′×1)=𝑎𝑒^𝑥+𝑏𝑒^(−𝑥)+2 𝒚^′′ 𝒙+𝟐𝒚^′=𝒂𝒆^𝒙+𝒃𝒆^(−𝒙)+𝟐 Now, we know that 𝑥𝑦=𝑎𝑒^𝑥+𝑏 𝑒^(−𝑥)+𝑥^2 𝑥𝑦−𝑥^2=𝑎𝑒^𝑥+𝑏 𝑒^(−𝑥) 𝒂𝒆^𝒙+𝒃 𝒆^(−𝒙)=𝒙𝒚−𝒙^𝟐 Putting (2) in (1) 𝑦^′′ 𝑥+2𝑦^′=𝒂𝒆^𝒙+𝒃𝒆^(−𝒙)+2 𝑦^′′ 𝑥+2𝑦^′=𝒙𝒚−𝒙^𝟐+2 (𝑑^2 𝑦)/(𝑑𝑥^2 ) 𝑥+2 𝑑𝑦/𝑑𝑥=𝒙𝒚−𝒙^𝟐+2 (𝒅^𝟐 𝒚)/(𝒅𝒙^𝟐 ) 𝒙+𝟐 𝒅𝒚/𝒅𝒙−𝒙𝒚+𝒙^𝟐=𝟎 ∴ The given function is a solution

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo