Slide10.JPG

Slide11.JPG


Transcript

Misc 2 For each of the exercise given below , verify that the given function (π‘–π‘šπ‘π‘™π‘–π‘π‘–π‘‘ π‘œπ‘Ÿ 𝑒π‘₯𝑝𝑙𝑖𝑐𝑖𝑑) is a solution of the corresponding differential equation . (iii) 𝑦=π‘₯ sin⁑3π‘₯ : (𝑑^2 𝑦)/(𝑑π‘₯^2 )+9π‘¦βˆ’6 cos⁑〖3π‘₯=0γ€— 𝑦=π‘₯ sin⁑3π‘₯ Differentiating w.r.t x 𝑦^β€²=(π‘₯ 𝑠𝑖𝑛⁑3π‘₯ )^β€² 𝑦^β€²=π‘₯^β€² sin⁑3π‘₯+π‘₯(sin⁑3π‘₯)β€² 𝑦^β€²=sin⁑3π‘₯+π‘₯Γ—3 cos⁑3π‘₯ π’š^β€²=π’”π’Šπ’β‘πŸ‘π’™+πŸ‘π’™ π’„π’π’”β‘πŸ‘π’™ Differentiating again w.r.t. x 𝑦^β€²β€²=(sin⁑3π‘₯ )^β€²+(3π‘₯ cos⁑3π‘₯ )^β€² 𝑦^β€²β€²=3 cos⁑3π‘₯+γ€–3(π‘₯)γ€—^β€² cos⁑3π‘₯+3π‘₯ (cos⁑3π‘₯ )^β€² 𝑦^β€²β€²=3 cos⁑3π‘₯+3 cos⁑3π‘₯+3π‘₯(βˆ’3 sin⁑3π‘₯) π’š^β€²β€²=πŸ” π’„π’π’”β‘πŸ‘π’™βˆ’πŸ—π’™ π’”π’Šπ’β‘πŸ‘π’™ Putting 𝑦=π‘₯ sin⁑3π‘₯ 𝑦^β€²β€²=6 cos⁑3π‘₯βˆ’9𝑦 π’š^β€²β€²+πŸ—π’šβˆ’πŸ” π’„π’π’”β‘πŸ‘π’™=𝟎 Thus, Given Function is a solution of the Differential Equation

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.