Misc 7 - Find particular solution: (1 + e2x)dy + (1 + y2) ex - Miscellaneous part 2 - Misc 7 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations part 3 - Misc 7 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations part 4 - Misc 7 - Miscellaneous - Serial order wise - Chapter 9 Class 12 Differential Equations

Share on WhatsApp

πŸŽ‰ Smart choice! You just saved 2+ minutes of ads and got straight to the good stuff. That's what being a Teachoo Black member is all about.


Transcript

Misc 7 Find the particular solution of the differential equation (1 + 𝑒^2π‘₯) dy + (1 + 𝑦^2) ex dx = 0, given that y = 1 when x = 0. Given (1 + e2x) dy + (1 + y2)𝑒^π‘₯ dx = 0 (1 + e2x) dy = βˆ’(1 + y2)𝑒^π‘₯ dx 𝑑𝑦/𝑑π‘₯ = (βˆ’(1 + 𝑦^2 ).𝑒^π‘₯)/(1 + 𝑒2π‘₯) π’…π’š/(𝟏 + π’š)^𝟐 = (βˆ’π’†^𝒙 𝒅𝒙)/(𝟏 + π’†πŸπ’™) Integrating both sides ∫1▒𝑑𝑦/γ€–(1 + 𝑦)γ€—^2 = ∫1β–’(𝑒π‘₯ 𝑑π‘₯)/γ€–1 + 𝑒〗^2π‘₯ Let t = ex Diff w.r.t.x 𝑑𝑑/𝑑π‘₯=𝑒^π‘₯ 𝑑𝑑/𝑒π‘₯= 𝑑π‘₯ ∴ Our equation becomes ∫1▒𝑑𝑦/γ€–1 + 𝑦〗^2 = βˆ’βˆ«1β–’γ€–(𝑒π‘₯ )/(1 + 𝑑^2 ) (𝑑𝑑 )/(𝑒π‘₯ )γ€— ∫1β–’π’…π’š/γ€–πŸ + π’šγ€—^𝟐 = βˆ’βˆ«1β–’γ€–(𝒅𝒕 )/(𝟏 + 𝒕^𝟐 ) γ€— tan^(βˆ’1)⁑𝑦=βˆ’tan^(βˆ’1)⁑𝑑+𝐢 Putting back value of t = ex 〖𝒕𝒂𝒏〗^(βˆ’πŸ)β‘π’š=βˆ’γ€–π’•π’‚π’γ€—^(βˆ’πŸ)⁑(𝒆^𝒙 )+π‘ͺ Given that y = 1 when x = 0 Put y = 1 and x = 0 in equation (2) tan^(βˆ’1)⁑〖(1)γ€—=βˆ’tan^(βˆ’1)⁑(𝒆^𝟎 )+𝐢 tan^(βˆ’1)⁑1=βˆ’tan^(βˆ’1)⁑𝟏+𝐢 tan^(βˆ’1)⁑1+tan^(βˆ’1)⁑1=𝐢 2 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑𝟏=𝐢 2 Γ— 𝝅/πŸ’=𝐢 2 Γ— πœ‹/2=𝐢 C = 𝝅/𝟐. Putting value of C in (2) tan^(βˆ’1)⁑𝑦=βˆ’tan^(βˆ’1)⁑(𝑒^π‘₯ )+𝐢 tan^(βˆ’1)⁑𝑦=βˆ’tan^(βˆ’1)⁑(𝑒^π‘₯ )+" " πœ‹/2 〖𝒕𝒂𝒏〗^(βˆ’πŸ)β‘π’š+〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑(𝒆^𝒙 )=" " 𝝅/𝟐 is the required particular solution.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo