# Ex 4.5, 17 (MCQ) - Chapter 4 Class 12 Determinants (Term 1)

Last updated at Aug. 9, 2021 by Teachoo

Ex 4.5

Ex 4.5, 1

Ex 4.5, 2

Ex 4.5, 3 Important

Ex 4.5, 4 Important

Ex 4.5, 5

Ex 4.5, 6 Important

Ex 4.5, 7

Ex 4.5, 8

Ex 4.5, 9

Ex 4.5, 10 Important

Ex 4.5, 11 Important

Ex 4.5, 12

Ex 4.5, 13

Ex 4.5, 14 Important

Ex 4.5, 15 Important

Ex 4.5, 16

Ex 4.5, 17 (MCQ) Important You are here

Ex 4.5, 18 (MCQ) Important

Chapter 4 Class 12 Determinants (Term 1)

Serial order wise

Last updated at Aug. 9, 2021 by Teachoo

Ex 4.5, 17 (Method 1) Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to A. |A| B. |A|2 C. |A|3 D. 3 |A| We know that |𝑎𝑑𝑗 𝐴| = |𝐴|^(𝑛 − 1) where n is the order of Matrix A Here, n = 3 |𝑎𝑑𝑗 𝐴| = |𝐴|^(3 − 1) = |𝐴|^2 Hence, B is the correct answer Nonsingular: Where |𝐴|≠ 0 Ex 4.5, 17 (Method 2) Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to A. |A| B. |A|2 C. |A|3 D. 3 |A| We know that A (adj A) = |A|I Taking determinants both sides |A (ad jA)| = ||A|I| Solving |A (adj (A))| |A (adj (A))| = |A| |adj (A)| (|𝐴𝐵|=|𝐴||𝐵|) Solving ||A|I| ||A|I| = |A|3|I| = |A|3 Now, |A (ad jA)| = ||A|I| Putting values |A| |adj (A)| = |A|3 |adj (A)| = |A|3/|A| |adj (A)| = |A|2 Thus, B is the correct answer Since |A| is Constant Using Property |kA| = kn |A| where n is order of A