Check sibling questions

Ex 4.5, 17 - Let A be a square matrix of order 3 x 3. Then |adj A| is

Ex 4.5, 17 - Chapter 4 Class 12 Determinants - Part 2
Ex 4.5, 17 - Chapter 4 Class 12 Determinants - Part 3

Solve all your doubts with Teachoo Black (new monthly pack available now!)


Transcript

Ex 4.5, 17 (Method 1) Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to A. |A| B. |A|2 C. |A|3 D. 3 |A| We know that |𝑎𝑑𝑗 𝐴| = |𝐴|^(𝑛 − 1) where n is the order of Matrix A Here, n = 3 |𝑎𝑑𝑗 𝐴| = |𝐴|^(3 − 1) = |𝐴|^2 Hence, B is the correct answer Nonsingular: Where |𝐴|≠ 0 Ex 4.5, 17 (Method 2) Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to A. |A| B. |A|2 C. |A|3 D. 3 |A| We know that A (adj A) = |A|I Taking determinants both sides |A (ad jA)| = ||A|I| Solving |A (adj (A))| |A (adj (A))| = |A| |adj (A)| (|𝐴𝐵|=|𝐴||𝐵|) Solving ||A|I| ||A|I| = |A|3|I| = |A|3 Now, |A (ad jA)| = ||A|I| Putting values |A| |adj (A)| = |A|3 |adj (A)| = |A|3/|A| |adj (A)| = |A|2 Thus, B is the correct answer Since |A| is Constant Using Property |kA| = kn |A| where n is order of A

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.