




Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 4.5
Ex 4.5, 2
Ex 4.5, 3 Important
Ex 4.5, 4 Important
Ex 4.5, 5
Ex 4.5, 6 Important
Ex 4.5, 7
Ex 4.5, 8
Ex 4.5, 9
Ex 4.5, 10 Important
Ex 4.5, 11 Important You are here
Ex 4.5, 12
Ex 4.5, 13
Ex 4.5, 14 Important
Ex 4.5, 15 Important
Ex 4.5, 16
Ex 4.5, 17 (MCQ) Important
Ex 4.5, 18 (MCQ) Important
Last updated at March 16, 2023 by Teachoo
Ex 4.5, 11 Find the inverse of each of the matrices [■8(1&0&[email protected]&cos𝛼&sin𝛼@0&sin𝛼&−cos𝛼 )] Let A =[■8(1&0&[email protected]&cos𝛼&sin𝛼@0&sin𝛼&−cos𝛼 )] We know that A–1 = 1/(|A|) (adj A) exists if |A|≠ 0 Calculating |A| |A| = |■8(1&0&[email protected]&cos𝛼&sin𝛼@0&sin𝛼&−cos𝛼 )| = 1 |■8(cos𝛼&sin𝛼@sin𝛼&−cos𝛼 )|– 0 |■8(0&sin𝛼@0&〖− cos〗𝛼 )|+ 0|■8(0&cos𝛼@0&𝑠𝑖𝑛 𝛼)| = 1(– cos2α – sin2α ) – 0 + 0 = –( cos2α + sin2α ) = –1 Since |𝐴|≠ 0 Thus A-1 exists Calculating adj A adj (A) = [■8(A11&A21&[email protected]&A22&[email protected]&A23&A33)] A = [■8(1&0&[email protected]&cos𝛼&sin𝛼@0&sin𝛼&−cos𝛼 )] M11 = |■8(cos"α" &sin"α" @sin"α" &−cos"α" )| = –cos2α – sin2α = –(cos^2α 〖+ 𝑠𝑖𝑛〗^2α ) = –1 M12 = |■8(0&sin 𝛼@0&−cos 𝛼)| = 0 – 0 = 0 M13 = |■8(0&cos𝛼@0&sin 𝛼)| = 0 – 0 = 0 M21 = |■8(0&[email protected] 𝛼&−cos𝛼 )| = 0 – 0 = 0 M22 = |■8(1&[email protected]&−cos 𝛼)| = –cos α – 0 = –cos α M23 = |■8(1&[email protected]&sin𝛼 )| = sin α = 0 = sin α M31 = |■8(0&[email protected] 𝛼&sin 𝛼)| = 0 – 0 = –0 M32 = |■8(1&[email protected]&sin 𝛼)| = sin α – 0 = sin α M33 = |■8(1&[email protected]&cos 𝛼)| = cos α + 0 = cos α Now, A11 = 〖(−1)〗^(1+1) M11 = 〖(−1)〗^2 (–1)2 = –1 A12 = 〖(−1)〗^(1+2) M12 = 〖(−1)〗^3 0 = 0 A13 = 〖(−1)〗^(1+3) M13 = 〖(−1)〗^4 0 = 0 A21 = 〖(−1)〗^(2+1)M21 = (–1)3 0 = 0 A22 = 〖(−1)〗^(2+2) M22 = 〖(−1)〗^4(– cos α) = –cos α A23 = 〖"(– 1)" 〗^(2+3) M23 = 〖"(–1)" 〗^5 sin α = –sin α A31 = 〖(−1)〗^(3+1). M31 = 〖(−1)〗^4 0 = 0 A32 = 〖(−1)〗^(3+2)sin α = (–1)5 sin α = –sin α A33 = 〖(−1)〗^(3+3)M33 = (–1)6 cos α = cos α So, adj (A) = [■8(A11&A21&[email protected]&A22&[email protected]&A23&A33)] = [■8(−1&0&[email protected]&−cos𝛼&−sin𝛼@0&−sin𝛼&cos𝛼 )] Calculating inverse Now, A– 1 = 1/(|A|) ( adj (A)) = 1/(−1) [■8(−1&0&[email protected]&−cos𝛼&−sin𝛼@0&−sin𝛼&cos𝛼 )] = – [■8(−1&0&[email protected]&−cos𝛼&−sin𝛼@0&−sin𝛼&cos𝛼 )] = [■8(𝟏&𝟎&𝟎@𝟎&𝒄𝒐𝒔𝜶&𝒔𝒊𝒏𝜶@𝟎&𝒔𝒊𝒏𝜶&〖−𝒄𝒐𝒔〗𝜶 )]