Slide61.JPG

Slide62.JPG
Slide63.JPG
Slide64.JPG
Slide65.JPG


Transcript

Ex 4.4, 15 For the matrix A = [■8(1&1&1@1&2&−3@2&−1&3)] show that A3 − 6A2 + 5A + 11I = O. Hence, find A−1. Calculating A2 A2 = A.A = [■8(1&1&1@1&2&−3@2&−1&3)] [■8(1&1&1@1&2&−3@2&−1&3)] = [■8(1(1)+1(1)+1(2)&1(1)+1(2)+1(−1)&1(1)+1(−3)+1(3)@1(1)+2(1)+(−3)(2)&1(1)+2(2)+(−3)(−1)&1(1)+2(−3)+(−3)(3)@2(1)+(−1)(1)+3(2)&2(1)+(−1)(2)+3(−1)&2(1)+(−1)(−3)+3(3))] = [■8(1+1+2&1+2−1&1−3+3@1+2−6&1+4+3&1−6−9@2−1+6&2−2−3&2+3+9)] = [■8(4&2&1@−3&8&−14@7&−3&14)] Now finding A3 A3 = A2 A A3 = [■8(4&2&1@−3&8&−14@7&−3&14)] [■8(1&1&1@1&2&−3@2&−1&3)] =[■8(4(1)+2(1)+1(2)&4(1)+2(2)+1(−1)&4(1)+2(−3)+1(3)@−3(1)+8(1)+(−4)(2)&−3(1)+8(2)+(−4)(−1)&3(1)+8(−3)+(−4)(3)@7(1)+(−3)(1)+14(2)&7(1)+(−3)(2)+14(−1)&7(1)+(−3)(−3)+14(3))] = [■8(4+2+2&4+4−1&4−6+3@−3+8−8&−3+16 −4&−3−24−42@7−3+28&7−6−14&7+9+42)] = [■8(8&7&1@−23&27&−69@32&−13&58)] Now Putting value of A3 , A2 in A3 – 6A2 + 5A + 11I = [■8(8&7&1@−23&27&−69@32&−13&58)] – 6 [■8(4&2&1@−3&8&−14@7&−3&14)] + 5 [■8(1&1&1@1&2&−3@2&−1&3)] + 11 [■8(1&0&0@0&1&0@0&0&1)] = [■8(8&7&1@−23&27&−69@32&−13&58)] – [■8(6(4)&6(2)&6(1)@6(−3)&6(8)&6(−14)@6(7)&6(−3)&6(14))] + [■8(5(1)&5(1)&5(1)@5(1)&5(2)&5(−3)@5(2)&5(−1)&5(3))] + [■8(11(1)&0&0@0&11(1)&0@0&0&11(1))] = [■8(8&7&1@−23&27&−69@32&−13&58)] – [■8(24&12&6@−18&48&−84@42&−18&84)] + [■8(5&5&5@5&10&−15@10&−5&15)] + [■8(11&0&0@0&11&0@0&0&11)] = [■8(8−24+5+11&7−12+5+0&1−6+5+0@−23+18+5+0&27−48+10+11&−69+84−15+0@32−42+10+0&−13+18−5+0&58+84+15+11)] = [■8(24−24&12−12&6−6@−23+23&−48+48&84−84@−42+42&18−18&84−84)] = [■8(0&0&0@0&0&0@0&0&0)] = O Hence proved Finding A-1 A3 – 6A2 + 5A + 11I = O Post multiplying A-1 both sides (A3 – 6A2 + 5A +11I)A-1 = O A-1 A3 .A-1 – 6 A2. A-1 + 5AA-1 + 11IA-1 = O A2. A.A-1 – 6A.AA-1 + 5AA-1 + 11A-1 = O A2 (AA-1) – 6A(AA-1) + 5(AA-1)11A-1 = O A2 I – 6AI + 5I + 11A-1 = 0 A2 – 6A + 5I + 11A-1 = 0 11A-1 = A2 + 6A – 5I A-1 = 1/11 (– A2 + 6A – 5I) Putting values A-1 = 1/11 ([■8(4&2&1@−3&8&−14@7&−3&14)]" + 6 " [■8(1&1&1@1&2&−3@2&−1&3)]−"5 " [■8(1&0&0@0&1&0@0&0&1)]) = 1/11 ([■8(−4&−2&−1@3&−8&14@−7&3&−14)]" + " [■8(6&6&6@6&12&−18@12&−6&18)]−[■8(5&0&0@0&5&0@0&0&5)]) = 1/11 ([■8(−4+6−5&−2+6+0&−1+6+0@3+6+0&−8+12−5&14−18+0@−7+12+0&3−6+0&−14+18−5)]" " ) = 𝟏/𝟏𝟏 [■8(−𝟑&𝟒&𝟓@𝟗&−𝟏&−𝟒@𝟓&−𝟑&−𝟏)]

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.