



Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 4.4
Ex 4.4, 2
Ex 4.4, 3 Important
Ex 4.4, 4 Important
Ex 4.4, 5
Ex 4.4, 6 Important
Ex 4.4, 7
Ex 4.4, 8
Ex 4.4, 9
Ex 4.4, 10 Important
Ex 4.4, 11 Important
Ex 4.4, 12
Ex 4.4, 13
Ex 4.4, 14 Important
Ex 4.4, 15 Important You are here
Ex 4.4, 16
Ex 4.4, 17 (MCQ) Important
Ex 4.4, 18 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 4.4, 15 For the matrix A = [■8(1&1&[email protected]&2&−[email protected]&−1&3)] show that A3 − 6A2 + 5A + 11I = O. Hence, find A−1. Calculating A2 A2 = A.A = [■8(1&1&[email protected]&2&−[email protected]&−1&3)] [■8(1&1&[email protected]&2&−[email protected]&−1&3)] = [■8(1(1)+1(1)+1(2)&1(1)+1(2)+1(−1)&1(1)+1(−3)+1(3)@1(1)+2(1)+(−3)(2)&1(1)+2(2)+(−3)(−1)&1(1)+2(−3)+(−3)(3)@2(1)+(−1)(1)+3(2)&2(1)+(−1)(2)+3(−1)&2(1)+(−1)(−3)+3(3))] = [■8(1+1+2&1+2−1&1−[email protected]+2−6&1+4+3&1−6−[email protected]−1+6&2−2−3&2+3+9)] = [■8(4&2&1@−3&8&−[email protected]&−3&14)] Now finding A3 A3 = A2 A A3 = [■8(4&2&1@−3&8&−[email protected]&−3&14)] [■8(1&1&[email protected]&2&−[email protected]&−1&3)] =[■8(4(1)+2(1)+1(2)&4(1)+2(2)+1(−1)&4(1)+2(−3)+1(3)@−3(1)+8(1)+(−4)(2)&−3(1)+8(2)+(−4)(−1)&3(1)+8(−3)+(−4)(3)@7(1)+(−3)(1)+14(2)&7(1)+(−3)(2)+14(−1)&7(1)+(−3)(−3)+14(3))] = [■8(4+2+2&4+4−1&4−6+3@−3+8−8&−3+16 −4&−3−24−[email protected]−3+28&7−6−14&7+9+42)] = [■8(8&7&1@−23&27&−[email protected]&−13&58)] Now Putting value of A3 , A2 in A3 – 6A2 + 5A + 11I = [■8(8&7&1@−23&27&−[email protected]&−13&58)] – 6 [■8(4&2&1@−3&8&−[email protected]&−3&14)] + 5 [■8(1&1&[email protected]&2&−[email protected]&−1&3)] + 11 [■8(1&0&[email protected]&1&[email protected]&0&1)] = [■8(8&7&1@−23&27&−[email protected]&−13&58)] – [■8(6(4)&6(2)&6(1)@6(−3)&6(8)&6(−14)@6(7)&6(−3)&6(14))] + [■8(5(1)&5(1)&5(1)@5(1)&5(2)&5(−3)@5(2)&5(−1)&5(3))] + [■8(11(1)&0&[email protected]&11(1)&[email protected]&0&11(1))] = [■8(8&7&1@−23&27&−[email protected]&−13&58)] – [■8(24&12&6@−18&48&−[email protected]&−18&84)] + [■8(5&5&[email protected]&10&−[email protected]&−5&15)] + [■8(11&0&[email protected]&11&[email protected]&0&11)] = [■8(8−24+5+11&7−12+5+0&1−6+5+0@−23+18+5+0&27−48+10+11&−69+84−[email protected]−42+10+0&−13+18−5+0&58+84+15+11)] = [■8(24−24&12−12&6−6@−23+23&−48+48&84−84@−42+42&18−18&84−84)] = [■8(0&0&[email protected]&0&[email protected]&0&0)] = O Hence proved Finding A-1 A3 – 6A2 + 5A + 11I = O Post multiplying A-1 both sides (A3 – 6A2 + 5A +11I)A-1 = O A-1 A3 .A-1 – 6 A2. A-1 + 5AA-1 + 11IA-1 = O A2. A.A-1 – 6A.AA-1 + 5AA-1 + 11A-1 = O A2 (AA-1) – 6A(AA-1) + 5(AA-1)11A-1 = O A2 I – 6AI + 5I + 11A-1 = 0 A2 – 6A + 5I + 11A-1 = 0 11A-1 = A2 + 6A – 5I A-1 = 1/11 (– A2 + 6A – 5I) Putting values A-1 = 1/11 ([■8(4&2&1@−3&8&−[email protected]&−3&14)]" + 6 " [■8(1&1&[email protected]&2&−[email protected]&−1&3)]−"5 " [■8(1&0&[email protected]&1&[email protected]&0&1)]) = 1/11 ([■8(−4&−2&−[email protected]&−8&14@−7&3&−14)]" + " [■8(6&6&[email protected]&12&−[email protected]&−6&18)]−[■8(5&0&[email protected]&5&[email protected]&0&5)]) = 1/11 ([■8(−4+6−5&−2+6+0&−[email protected]+6+0&−8+12−5&14−18+0@−7+12+0&3−6+0&−14+18−5)]" " ) = 𝟏/𝟏𝟏 [■8(−𝟑&𝟒&𝟓@𝟗&−𝟏&−𝟒@𝟓&−𝟑&−𝟏)]