
Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc. 2 Important Deleted for CBSE Board 2023 Exams
Misc 3
Misc 4
Misc 5
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9
Misc 10
Misc 11 Important Deleted for CBSE Board 2023 Exams
Misc 12 Important Deleted for CBSE Board 2023 Exams
Misc. 13 Deleted for CBSE Board 2023 Exams
Misc 14 Deleted for CBSE Board 2023 Exams
Misc. 15 Important Deleted for CBSE Board 2023 Exams
Misc. 16 Important
Misc 17 (MCQ) Important Deleted for CBSE Board 2023 Exams
Misc 18 (MCQ)
Misc 19 (MCQ) Important
Matrices and Determinants - Formula Sheet and Summary Important
Last updated at March 22, 2023 by Teachoo
Misc 1 Prove that determinant |β 8(π₯&π ππβ‘π&πππ β‘π@βπ ππβ‘π&βπ₯&[email protected]πππ β‘π&1&π₯)| is independent of ΞΈ. Let β = |β 8(π₯&π ππβ‘π&πππ β‘π@βπ ππβ‘π&βπ₯&[email protected]πππ β‘π&1&π₯)| β = x |β 8(βπ₯&[email protected]&π₯)| β sin ΞΈ |β 8(βsinβ‘ΞΈ&[email protected]β‘ΞΈ&π₯)| + cos ΞΈ |β 8(βsinβ‘ΞΈ&βπ₯@cosβ‘ΞΈ&1)| = x ( βx2 β 1) β sin ΞΈ ( βxsin ΞΈ β cos ΞΈ) + cos ΞΈ (βsin ΞΈ + x cos ΞΈ) = βx3 β x + x sinβ‘γ2 ΞΈγ + π¬π’π§β‘π cos ΞΈ β sin ΞΈ cos ΞΈ + x cos2 ΞΈ = βx3 β x + x sin2 ΞΈ + x cos2 ΞΈ = βx3 β x + x (sin2 ΞΈ + cos2 ΞΈ) = βx3 β x + x (1) = βx3 (As sin2 ΞΈ + cos2 ΞΈ = 1) Hence β = βx3 Which has no ΞΈ term Thus, the determinant is independent of ΞΈ Hence Proved