




Miscellaneous
Misc. 2 Important Deleted for CBSE Board 2022 Exams
Misc 3
Misc 4 Deleted for CBSE Board 2022 Exams
Misc 5
Misc 6 Important Deleted for CBSE Board 2022 Exams
Misc 7 Important
Misc 8
Misc 9
Misc 10
Misc 11 Important Deleted for CBSE Board 2022 Exams
Misc 12 Important Deleted for CBSE Board 2022 Exams You are here
Misc. 13 Deleted for CBSE Board 2022 Exams
Misc 14 Deleted for CBSE Board 2022 Exams
Misc. 15 Important Deleted for CBSE Board 2022 Exams
Misc. 16 Important
Misc 17 (MCQ) Important Deleted for CBSE Board 2022 Exams
Misc 18 (MCQ)
Misc 19 (MCQ) Important
Matrices and Determinants - Formula Sheet and Summary Important
Misc 12 Using properties of determinants, prove that: |■8(x&x2&1+px3@y&y2&1+py3@z&z2&1+pz3)| = (1 + pxyz) (x – y) (y – z) (z – x) Solving L.H.S |■8(x&x2&1+px3@y&y2&1+py3@z&z2&a+pz3)| Expressing elements of 3rd column as sum of two elements = |■8(x&x2&1@y&y2&1@z&z2&1)| + |■8(x&x2&px3@y&y2&py3@z&z2&pz3)| Using Property : If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms ,then the determinant is expressed as a sum of two (or more) determinants. = |■8(x&x2&1@y&y2&1@z&z2&1)| + |■8(x&x2&px3@y&y2&py3@z&z2&pz3)| = |■8(x&x2&1@y&y2&1@z&z2&1)| + p |■8(x&x2&x3@y&y2&x3@z&z2&x3)| = |■8(x&x2&1@y&y2&1@z&z2&1)| + pxyz |■8(1&x&x2@1&y&x2@1&z&x2)| = |■8(x&x2&1@y&y2&1@z&z2&1)| – pxyz |■8(x&1&x2@y&1&y2@z&1&z2)| Taking p common from C3 Taking x common from R1 , y common from R2 , z common from R3 If any two rows ( or columns) of a determinant are interchanged , then sign of determinant changes. Again Replace C2 ↔ C3 = |■8(x&x2&1@y&y2&1@z&z2&1)| – ( – 1)pxyz |■8(x&x2&1@y&y2&1@z&z2&1)| = |■8(x&x2&1@y&y2&1@z&z2&1)| + pxyz |■8(x&x2&1@y&y2&1@z&z2&1)| Taking Common |■8(𝒙&𝒙𝟐&𝟏@𝒚&𝒚𝟐&𝟏@𝒛&𝒛𝟐&𝟏)| = (1 + pxyz) |■8(x&x2&1@y&y2&1@z&z2&1)| Applying R1 → R1 − R2 = (1 + pxyz) |■8(x−y&x2−y2&𝟏−𝟏@y&y2&1@z&z2&1)| = (1 + pxyz) |■8(x−y&(x−y)(x−y)&𝟎@y&y2&1@z&z2&1)| Taking Common (x – y) From R1 = (1 + pxyz) (x – y) |■8(1& x+y&0@y&y2&1@z&z2&1)| Applying R2 → R2 − R3 = (1 + pxyz) (x – y) |■8(1& x+y&0@y−z&y2−z2&𝟏−𝟏@z&z2&1)| = (1 + pxyz) (x – y) |■8(1& x+y&0@y−z&(y−z)(y+z)&𝟎@z&z2&1)| Taking Common (y – z) from R2 = (1 + pxyz) (x – y) (y – z) |■8(1& x+y&0@1&𝑦+𝑧&0@z&z2&1)| Applying R1 → R1 − R2 = (1 + pxyz) (x – y) (y – z) |■8(𝟏−𝟏& x+y−𝑦−𝑧&0−0@1&𝑦+𝑧&0@z&z2&1)| = (1 + pxyz) (x – y) (y – z) |■8(𝟎& x−𝑧&0@1&𝑦+𝑧&0@z&z2&1)| Expanding determinant along C3 = (1 + pxyz) (x – y) (y – z) (0|■8(1&𝑦+𝑧@𝑧&𝑧2)|−0|■8(0&𝑥−𝑧@𝑧&𝑧2)|+1|■8(0&𝑥−𝑧@1&𝑦+𝑧)|) = (1 + pxyz) (x – y) (y – z) (0 – 0 + 1 (0 – (x – z)) = (1 + pxyz) (x – y) (x – z) (0 – x + z) = (1 + pxyz) (x – y) (y – z) (z – x) = R.H.S Hence Proved