Get live Maths 1-on-1 Classs - Class 6 to 12

Miscellaneous

Misc 1

Misc. 2 Important Deleted for CBSE Board 2023 Exams

Misc 3

Misc 4

Misc 5

Misc 6 Important

Misc 7 Important

Misc 8

Misc 9

Misc 10

Misc 11 Important Deleted for CBSE Board 2023 Exams

Misc 12 Important Deleted for CBSE Board 2023 Exams You are here

Misc. 13 Deleted for CBSE Board 2023 Exams

Misc 14 Deleted for CBSE Board 2023 Exams

Misc. 15 Important Deleted for CBSE Board 2023 Exams

Misc. 16 Important

Misc 17 (MCQ) Important Deleted for CBSE Board 2023 Exams

Misc 18 (MCQ)

Misc 19 (MCQ) Important

Matrices and Determinants - Formula Sheet and Summary Important

Chapter 4 Class 12 Determinants

Serial order wise

Last updated at March 16, 2023 by Teachoo

Misc 12 Using properties of determinants, prove that: |■8(x&x2&[email protected]&y2&[email protected]&z2&1+pz3)| = (1 + pxyz) (x – y) (y – z) (z – x) Solving L.H.S |■8(x&x2&[email protected]&y2&[email protected]&z2&a+pz3)| Expressing elements of 3rd column as sum of two elements = |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| + |■8(x&x2&[email protected]&y2&[email protected]&z2&pz3)| Using Property : If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms ,then the determinant is expressed as a sum of two (or more) determinants. = |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| + |■8(x&x2&[email protected]&y2&[email protected]&z2&pz3)| = |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| + p |■8(x&x2&[email protected]&y2&[email protected]&z2&x3)| = |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| + pxyz |■8(1&x&[email protected]&y&[email protected]&z&x2)| = |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| – pxyz |■8(x&1&[email protected]&1&[email protected]&1&z2)| Taking p common from C3 Taking x common from R1 , y common from R2 , z common from R3 If any two rows ( or columns) of a determinant are interchanged , then sign of determinant changes. Again Replace C2 ↔ C3 = |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| – ( – 1)pxyz |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| = |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| + pxyz |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| Taking Common |■8(𝒙&𝒙𝟐&𝟏@𝒚&𝒚𝟐&𝟏@𝒛&𝒛𝟐&𝟏)| = (1 + pxyz) |■8(x&x2&[email protected]&y2&[email protected]&z2&1)| Applying R1 → R1 − R2 = (1 + pxyz) |■8(x−y&x2−y2&𝟏−𝟏@y&y2&[email protected]&z2&1)| = (1 + pxyz) |■8(x−y&(x−y)(x−y)&𝟎@y&y2&[email protected]&z2&1)| Taking Common (x – y) From R1 = (1 + pxyz) (x – y) |■8(1& x+y&[email protected]&y2&[email protected]&z2&1)| Applying R2 → R2 − R3 = (1 + pxyz) (x – y) |■8(1& x+y&[email protected]−z&y2−z2&𝟏−𝟏@z&z2&1)| = (1 + pxyz) (x – y) |■8(1& x+y&[email protected]−z&(y−z)(y+z)&𝟎@z&z2&1)| Taking Common (y – z) from R2 = (1 + pxyz) (x – y) (y – z) |■8(1& x+y&[email protected]&𝑦+𝑧&[email protected]&z2&1)| Applying R1 → R1 − R2 = (1 + pxyz) (x – y) (y – z) |■8(𝟏−𝟏& x+y−𝑦−𝑧&0−[email protected]&𝑦+𝑧&[email protected]&z2&1)| = (1 + pxyz) (x – y) (y – z) |■8(𝟎& x−𝑧&[email protected]&𝑦+𝑧&[email protected]&z2&1)| Expanding determinant along C3 = (1 + pxyz) (x – y) (y – z) (0|■8(1&𝑦+𝑧@𝑧&𝑧2)|−0|■8(0&𝑥−𝑧@𝑧&𝑧2)|+1|■8(0&𝑥−𝑧@1&𝑦+𝑧)|) = (1 + pxyz) (x – y) (y – z) (0 – 0 + 1 (0 – (x – z)) = (1 + pxyz) (x – y) (x – z) (0 – x + z) = (1 + pxyz) (x – y) (y – z) (z – x) = R.H.S Hence Proved