




Now learn Economics at Teachoo for Class 12
Miscellaneous
Misc. 2 Important Deleted for CBSE Board 2022 Exams
Misc 3
Misc 4 Deleted for CBSE Board 2022 Exams
Misc 5
Misc 6 Important Deleted for CBSE Board 2022 Exams
Misc 7 Important You are here
Misc 8
Misc 9
Misc 10
Misc 11 Important Deleted for CBSE Board 2022 Exams
Misc 12 Important Deleted for CBSE Board 2022 Exams
Misc. 13 Deleted for CBSE Board 2022 Exams
Misc 14 Deleted for CBSE Board 2022 Exams
Misc. 15 Important Deleted for CBSE Board 2022 Exams
Misc. 16 Important
Misc 17 (MCQ) Important Deleted for CBSE Board 2022 Exams
Misc 18 (MCQ)
Misc 19 (MCQ) Important
Matrices and Determinants - Formula Sheet and Summary Important
Last updated at Jan. 23, 2020 by Teachoo
Misc 7 If A-1 = [■8(3&−1&1@−15&6&−5@5&−2&2)] and B = [■8(1&2&−2@−1&3&0@0&−2&1)] , Find (AB)-1 We know that (AB)−1 = B−1 A−1 We are given A-1 , so calculating B−1 Calculating B−1 We know that B−1 = 1/(|B|) adj (B) exists if |B| ≠ 0 |B| = |■8(1&2&−2@−1&3&0@0&−2&1)| = 1 (3 – 0) – 2(– 1 – 0) –2 (2 – 0) = 1 (3) –2 (–1) –2(2) = 3 + 2 – 4 = 1 Since |B| ≠ 0 Thus, B-1 exists Calculating adj B Now, adj B = [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] B = [■8(1&2&−2@−1&3&0@0&−2&1)] M11 = |■8(3&0@−2&1)| =3(1) – (–2)0 = 3 M12 = |■8(−1&0@0&1)| = -1(1) – 0(0)= –1 M13 = |■8(−1&3@0&−2)| =(–1)(–2) – 0(3)= 2 M21 = |■8(2&−2@−2&1)| =2(1)–(–2)(–2)= –2 M22 = |■8(1&−2@0&1)| = 1(1) – 0(−2) = 1 M23 = |■8(1&2@0&−2)| = 1(-2) – 0(2) = –2 M31 = |■8(2&−2@3&0)| = 2(0) – 3(−2) = 6 M32 = |■8(1&−2@−1&0)| =1(0)–(–1)(–2)= –2 M33 = |■8(1&2@−1&3)| = 1(3) – (–1)2 = 5 Now, A11 = (–1)1+1 M11 = (–1)2 . 3 = 3 A12 = (–1)1+2 M12 = (–1)3 (–1) = 1 A13 = (–1)1+3 M13 = (–1)4 2 = 2 A21 = (–1)2+1 M21 = (–1)3 (–2) = 2 A22 = (–1)2+2 M22 = (–1)4 . 1 = 1 A23 = (–1)2+3 M23 = (–1)5 (–2) = 2 A31 = (–1)3+1 M31 = (–1)4 . 6 = 6 A32 = (–1)3+2 M32 = (–1)5 (–2) = 2 A33 = (–1)3+3 M33 = (–1)6 . 5 = 5 Thus, adj (B) = [■8(3&2&6@1&1&2@2&2&5)] Now, B−1 = 1/(|B|) adj (B) Putting values = 1/1 [■8(3&2&6@1&1&2@2&2&5)] = [■8(3&2&6@1&1&2@2&2&5)] Also, (AB)-1 = B−1 A−1 = [■8(3&2&6@1&1&2@2&2&5)] [■8(3&−1&1@−15&6&−5@5&−2&2)] = [■8(3(3)+2(⤶7−15)+6(−5)&3(−1)+2(6)+6(−2)&3(1)+2(−5)+6(2)@1(3)+1(⤶7−15)+2(−5)&1(−1)+1(6)+2(−2)&1(1)+1(−5)+2(2)@2(3)+2(⤶7−15)+5(−5)&2(−1)+2(6)+5(−2)&2(1)+2(−5)+5(2))] = [■8(9−30+30&−3+12−12&3−10+12@3−15+10&−1+6−4&1−5+4@6−30+25&−2+12−10&2−10+10)] = [■8(𝟗&−𝟑&𝟓@−𝟐&𝟏&𝟎@𝟏&𝟎&𝟐)]