





Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5
Misc 6
Misc 7 Important
Misc 8 (MCQ)
Misc 9 (MCQ) Important
Matrices and Determinants - Formula Sheet and Summary Important
Question 1 Important Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Important Deleted for CBSE Board 2024 Exams
Question 10 (MCQ) Important Deleted for CBSE Board 2024 Exams You are here
Last updated at May 29, 2023 by Teachoo
Misc 17 (Method 1) Choose the correct answer. If a, b, c, are in A.P., then the determinant |■8(𝑥+2&𝑥+3&𝑥+2𝑎@𝑥+3&𝑥+4&𝑥+2𝑏@𝑥+4&𝑥+5&𝑥+2𝑐)| is A. 0 B. 1 C. x D. 2x Since a, b & c are in A.P Then, b – a = c – b b – a – c + b = 0 2b – a – c = 0 (Common difference is equal) …(1) Solving |■8(x+2&x+3&x+2a@x+3&x+4&x+2b@x+4&x+5&x+2c)| Multiplying and dividing 2 = 2/2 |■8(x+2&x+3&x+2a@x+3&x+4&x+2b@x+4&x+5&x+2c)| Multiplying R2 by 2 = 1/2 |■8(𝑥+2&𝑥+3&𝑥+2𝑎@𝟐(𝑥+3)&𝟐(𝑥+4)&𝟐(𝑥+2𝑏)@𝑥+4&𝑥+5&𝑥+2𝑐)| = 1/2 |■8(𝑥+2&𝑥+3&𝑥+2𝑎@2𝑥+6&2𝑥+8&2𝑥+4𝑏@𝑥+4&𝑥+5&𝑥+2𝑐)| Applying R2 → R2 – R1 – R3 = 1/2 |■8(𝑥+2&𝑥+3&𝑥+2𝑎@2𝑥+6−(𝑥+2)−(𝑥+4 )&2𝑥+8−(𝑥+3)−(𝑥+5)&2𝑥+4𝑏−(𝑥+2𝑎)−(𝑥+2𝑐)@𝑥+4&𝑥+5&𝑥+2𝑐)| = 1/2 |■8(𝑥+2&𝑥+3&𝑥+2𝑎@2𝑥+6−𝑥−2−𝑥−4&2𝑥+8−𝑥−3−𝑥−5&2𝑥+4𝑏−𝑥−2𝑎−𝑥−2𝑐@𝑥+4&𝑥+5&𝑥+2𝑐)| = 1/2 |■8(𝑥+2&𝑥+3&𝑥+2𝑎@0&0&4𝑏−2𝑎−2𝑐@𝑥+4&𝑥+5&𝑥+2𝑐)| = 1/2 |■8(𝑥+2&𝑥+3&𝑥+2𝑎@0&0&2(𝟐𝒃−𝒂−𝒄)@𝑥+4&𝑥+5&𝑥+2𝑐)| = 1/2 |■8(𝑥+2&𝑥+3&𝑥+2𝑎@0&0&2(𝟎)@𝑥+4&𝑥+5&𝑥+2𝑐)| (From (1): 2b – b – c = 0) = 1/2 |■8(𝑥+2&𝑥+3&𝑥+2𝑎@0&0&0@𝑥+4&𝑥+5&𝑥+2𝑐)| If any row or column of determinant are zero, then value of determinant is also zero. = 1/2 × 0 = 0 Thus, the value of determinant is 0 Correct Answer is A Misc 17 (Method 2) Choose the correct answer. If a, b, c, are in A.P., then the determinant |■8(x+2&x+3&x+2a@x+3&x+4&x+2b@x+4&x+5&x+2c)| is A. 0 B. 1 C. x D. 2x Since a, b & c are in A.P Then a – b = c – b b + b = c + a 2b = a + c (Common difference is equal) …(1) Consider |■8(𝑥+2&𝑥+3&𝑥+2𝑎@𝑥+3&𝑥+4&𝑥+2𝑏@𝑥+4&𝑥+5&𝑥+2𝑐)| Applying R1 →R1 + R3 – 2R2 = |■8((𝑥+2)+(𝑥+4)−2(𝑥+3)&(𝑥+3)+(𝑥+5)−2(𝑥+4)&(𝑥+2𝑎)+(𝑥+2𝑐)−2(𝑥+2𝑏)@𝑥+3&𝑥+4&𝑥+2𝑏@𝑥+4&𝑥+5&𝑥+2𝑐)| = |■8(𝑥+2+𝑥+4−2𝑥−6&𝑥+3+𝑥+5−2𝑥−8&𝑥+2𝑎+𝑥+2𝑐−2𝑥−4𝑏@𝑥+3&𝑥+4&𝑥+2𝑏@𝑥+4&𝑥+5&𝑥+2𝑐)| = |■8(2𝑥−2𝑥+6−6&2𝑥−2𝑥+8−8&2𝑥−2𝑥+2𝑎+2𝑐−4𝑏@𝑥+3&𝑥+4&𝑥+2𝑏@𝑥+4&𝑥+5&𝑥+2𝑐)| = |■8(0&0&0+2(𝒂+𝒄−2𝑏)@𝑥+3&𝑥+4&𝑥+2𝑏@𝑥+4&𝑥+5&𝑥+2𝑐)| = |■8(0&0&2(𝟐𝒃−2𝑏)@𝑥+3&𝑥+4&𝑥+2𝑏@𝑥+4&𝑥+5&𝑥+2𝑐)| = |■8(0&0&0@𝑥+3&𝑥+4&𝑥+2𝑏@𝑥+4&𝑥+5&𝑥+2𝑐)| If any row or column of determinant are zero, then value of determinant is also zero. = 0 Hence, value of determinant is 0 Correct Answer is A (From (1): 2b = a + c)