Miscellaneous

Misc 1

Misc. 2 Important Deleted for CBSE Board 2022 Exams

Misc 3

Misc 4 Deleted for CBSE Board 2022 Exams

Misc 5

Misc 6 Important Deleted for CBSE Board 2022 Exams

Misc 7 Important

Misc 8

Misc 9

Misc 10

Misc 11 Important Deleted for CBSE Board 2022 Exams

Misc 12 Important Deleted for CBSE Board 2022 Exams

Misc. 13 Deleted for CBSE Board 2022 Exams

Misc 14 Deleted for CBSE Board 2022 Exams

Misc. 15 Important Deleted for CBSE Board 2022 Exams

Misc. 16 Important

Misc 17 (MCQ) Important Deleted for CBSE Board 2022 Exams

Misc 18 (MCQ)

Misc 19 (MCQ) Important You are here

Matrices and Determinants - Formula Sheet and Summary Important

Chapter 4 Class 12 Determinants (Term 1)

Serial order wise

Last updated at Aug. 9, 2021 by Teachoo

Hello! We hope that the questions explained by Teachoo are helping you for your Board exams. If Teachoo has been of any help to you, would you consider making a donation to support us? Please click on this link to support us.

Hello! We hope that the questions explained by Teachoo are helping you for your Board exams. If Teachoo has been of any help to you, would you consider making a donation to support us? Please click on this link to support us.

Misc 19 Choose the correct answer. Let A = [■8(1&sinθ&1@−sinθ&1&sinθ@−1&〖−sin〗θ&1)] , where 0 ≤ θ≤ 2π, then A. Det (A) = 0 B. Det (A) ∈ (2, ∞) C. Det (A) ∈ (2, 4) D. Det (A)∈ [2, 4] A = [■8(1&sinθ&1@−sinθ&1&sinθ@−1&〖−sin〗θ&1)] |A| = |■8(1&sinθ&1@−sinθ&1&sinθ@−1&〖−sin〗θ&1)| = 1 |■8(1&sinθ@−sinθ&1)| – sin θ |■8(−sinθ&sinθ@−1&1)| + 1 |■8(−sinθ&1@−1&〖−sin〗θ )| = 1 (1 + sin2 θ) – sin θ (–sin θ + sin θ) + 1 (sin2 θ + 1) = (1 + sin2 θ) –sin θ × 0 + (1 + sin2 θ) = 2 (1 + sin2 θ) Thus, |A| = 2 (1 + sin2 θ) We know that –1 ≤ sin θ ≤ 1 So, value of sin θ can be from –1 to 1 Suppose, Hence, value of sin2 θ can be from 0 to 1 (negative not possible) Thus 2 ≤ |A| ≤ 4 |A|∈ [2 , 4] Det (A) ∈ [2 , 4] Thus, D is the correct answer sin θ = –1 sin2 θ = 1 sin θ = 1 sin2 θ = 1 sin θ = 0 sin2 θ = 0 Putting sin2 θ = 0 in |A| |A| = 2(1 + 0) |A| = 2 Thus minimum value of |A| is 2 Putting sin2 θ = 1 in |A| |A| = 2 (1 + 1) = 2 (2) = 4 Thus maximum value of |A| is 4