




Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 4.4
Ex 4.4, 2
Ex 4.4, 3 Important
Ex 4.4, 4 Important You are here
Ex 4.4, 5
Ex 4.4, 6 Important
Ex 4.4, 7
Ex 4.4, 8
Ex 4.4, 9
Ex 4.4, 10 Important
Ex 4.4, 11 Important
Ex 4.4, 12
Ex 4.4, 13
Ex 4.4, 14 Important
Ex 4.4, 15 Important
Ex 4.4, 16
Ex 4.4, 17 (MCQ) Important
Ex 4.4, 18 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 4.4, 4 Verify A (adj A) = (adj A) A = |𝐴|I for A = [■8(1&−1&[email protected]&0&−[email protected]&0&3)] Calculating |𝑨| |A| = |■8(1&−1&[email protected]&0&−[email protected]&0&3)| = 1 |■8(0&−[email protected]&3)| – (–1) |■8(3&−[email protected]&3)| +2 |■8(3&[email protected]&0)| = 1 (0 – 0) + 1 (9 + 2) +2 (0 – 0) = 11 Calculating adj A adj A = [■8(A_11&A_21&[email protected]_12&A_22&[email protected]_13&A_23&A_33 )] A = [■8(1&−1&[email protected]&0&−[email protected]&0&3)] M11 = |■8(0&−[email protected]&3)| = 0(3) – 0(–2) = 0 M12 = |■8(3&−[email protected]&3)| = 3(3) – 1(–2) = 11 M13 = |■8(3&[email protected]&0)| = 3(0) – 0(1) = 0 M21 = |■8(−1&[email protected]&3)| = −1(3) – 0(2) = −3 M22 = |■8(1&[email protected]&3)| = 1(3) – 1(2) = 1 M23 = |■8(1&−[email protected]&0)| = 1(0) – 1(−1) = 1 M31 = |■8("−" 1&[email protected]&"−" 2)| = -1(–2) – 0(2) = 2 M32 = |■8(1&[email protected]&−2)| = 1(–2) – 3(2) = –8 M33 = |■8(1&−[email protected]&0)| = 1(0) – 3(−1) = 3 Now, A11 = (–1)1 + 1 M11 = (–1)2 0 = 0 A12 = (–1)1+2 M12 = (–1)3 (11) = –11 A13 = (–1)1+3 M13 = (–1)4 0 = 0 A21 = (–1)2+1 M21 = (–1)3 (−3) = 3 A22 = (–1)2+2 M22 = (–1)4 . 1 = 1 A23 = (–1)2+3 M23 = (–1)5 (1) = −1 A31 = (–1)3+1 M31 = (–1)4 (2) = 2 A32 = (–1)3+2 M32 = (–1)5 (–8) = 8 A33 = (–1)3+3 M33 = (–1)6 (3) = 3 Thus adj (A) = [■8(A11&A21&[email protected]&A22&[email protected]&A23&A33)] = [■8(0&3&2@−11&1&[email protected]&−1&3)] Calculating A (adj A) [■8(1&−1&[email protected]&0&−[email protected]&0&3)] [■8(0&3&2@−11&1&[email protected]&−1&3)] = [■8(1(0)−1(⤶7−11)+2(0)&1(3)−1(1)+2(−1)&1(2)−1(8)+2(3)@3(0)+0(⤶7−11)+(−2)(0)&3(3)+0(1)+(−2)(−1)&3(2)+0(8)+(−2)(3)@1(0)+0(⤶7−11)+3(0)&1(3)+0(1)+3(−1)&1(2)+0(8)+3(3))] = [■8(0+11+0&3−1−2&2−[email protected]−0−0&9+0+2&6+0−[email protected]−0+0&3+0−3&2+0+9)] = [■8(11&0&[email protected]&11&[email protected]&0&11)] = 11 [■8(1&0&[email protected]&1&[email protected]&0&1)] = 11I Calculating (adj A)A [■8(0&3&2@−11&1&[email protected]&−1&3)] [■8(1&−1&[email protected]&0&−[email protected]&0&3)] = [■8(0(1)+3(3)+2(1)&0(−1)+3(0)+2(0)&0(2)+3(−2)+2(3)@−11(1)+1(3)+8(1)&−11(−1)+1(0)+8(0)&−11(2)+1(−2)+8(3)@0(1)+(−1)(3)+3(1)&0(−1)+(−1)(0)+3(0)&0(2)+(−1)(−2)+3(3))] = [■8(0+9+2&−0+0+0&0−6+6@−11+3+8&11+0+0&−22−[email protected]−3+3&−0−0+0&−0+2+9)]a = [■8(11&0&[email protected]&11&[email protected]&0&11)] = 11 [■8(1&0&[email protected]&1&[email protected]&0&1)] = 11I Calculating |A| I |A|I = 11I Thus, A (adj(A)) = (adj A) A = |A| I = 11I Hence Proved