Ex 4.4, 4 - Chapter 4 Class 12 Determinants
Last updated at April 16, 2024 by Teachoo
Ex 4.4
Ex 4.4, 2
Ex 4.4, 3 Important
Ex 4.4, 4 Important You are here
Ex 4.4, 5
Ex 4.4, 6 Important
Ex 4.4, 7
Ex 4.4, 8
Ex 4.4, 9
Ex 4.4, 10 Important
Ex 4.4, 11 Important
Ex 4.4, 12
Ex 4.4, 13
Ex 4.4, 14 Important
Ex 4.4, 15 Important
Ex 4.4, 16
Ex 4.4, 17 (MCQ) Important
Ex 4.4, 18 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 4.4, 4 Verify A (adj A) = (adj A) A = |๐ด|I for A = [โ 8(1&โ1&2@3&0&โ2@1&0&3)] Calculating |๐จ| |A| = |โ 8(1&โ1&2@3&0&โ2@1&0&3)| = 1 |โ 8(0&โ2@0&3)| โ (โ1) |โ 8(3&โ2@1&3)| +2 |โ 8(3&0@1&0)| = 1 (0 โ 0) + 1 (9 + 2) +2 (0 โ 0) = 11 Calculating adj A adj A = [โ 8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] A = [โ 8(1&โ1&2@3&0&โ2@1&0&3)] M11 = |โ 8(0&โ2@0&3)| = 0(3) โ 0(โ2) = 0 M12 = |โ 8(3&โ2@1&3)| = 3(3) โ 1(โ2) = 11 M13 = |โ 8(3&0@1&0)| = 3(0) โ 0(1) = 0 M21 = |โ 8(โ1&2@0&3)| = โ1(3) โ 0(2) = โ3 M22 = |โ 8(1&2@1&3)| = 1(3) โ 1(2) = 1 M23 = |โ 8(1&โ1@1&0)| = 1(0) โ 1(โ1) = 1 M31 = |โ 8("โ" 1&2@0&"โ" 2)| = -1(โ2) โ 0(2) = 2 M32 = |โ 8(1&2@3&โ2)| = 1(โ2) โ 3(2) = โ8 M33 = |โ 8(1&โ1@3&0)| = 1(0) โ 3(โ1) = 3 Now, A11 = (โ1)1 + 1 M11 = (โ1)2 0 = 0 A12 = (โ1)1+2 M12 = (โ1)3 (11) = โ11 A13 = (โ1)1+3 M13 = (โ1)4 0 = 0 A21 = (โ1)2+1 M21 = (โ1)3 (โ3) = 3 A22 = (โ1)2+2 M22 = (โ1)4 . 1 = 1 A23 = (โ1)2+3 M23 = (โ1)5 (1) = โ1 A31 = (โ1)3+1 M31 = (โ1)4 (2) = 2 A32 = (โ1)3+2 M32 = (โ1)5 (โ8) = 8 A33 = (โ1)3+3 M33 = (โ1)6 (3) = 3 Thus adj (A) = [โ 8(A11&A21&A31@A12&A22&A32@A33&A23&A33)] = [โ 8(0&3&2@โ11&1&8@0&โ1&3)] Calculating A (adj A) [โ 8(1&โ1&2@3&0&โ2@1&0&3)] [โ 8(0&3&2@โ11&1&8@0&โ1&3)] = [โ 8(1(0)โ1(โคถ7โ11)+2(0)&1(3)โ1(1)+2(โ1)&1(2)โ1(8)+2(3)@3(0)+0(โคถ7โ11)+(โ2)(0)&3(3)+0(1)+(โ2)(โ1)&3(2)+0(8)+(โ2)(3)@1(0)+0(โคถ7โ11)+3(0)&1(3)+0(1)+3(โ1)&1(2)+0(8)+3(3))] = [โ 8(0+11+0&3โ1โ2&2โ8+6@0โ0โ0&9+0+2&6+0โ6@0โ0+0&3+0โ3&2+0+9)] = [โ 8(11&0&0@0&11&0@0&0&11)] = 11 [โ 8(1&0&0@0&1&0@0&0&1)] = 11I Calculating (adj A)A [โ 8(0&3&2@โ11&1&8@0&โ1&3)] [โ 8(1&โ1&2@3&0&โ2@1&0&3)] = [โ 8(0(1)+3(3)+2(1)&0(โ1)+3(0)+2(0)&0(2)+3(โ2)+2(3)@โ11(1)+1(3)+8(1)&โ11(โ1)+1(0)+8(0)&โ11(2)+1(โ2)+8(3)@0(1)+(โ1)(3)+3(1)&0(โ1)+(โ1)(0)+3(0)&0(2)+(โ1)(โ2)+3(3))] = [โ 8(0+9+2&โ0+0+0&0โ6+6@โ11+3+8&11+0+0&โ22โ2+24@0โ3+3&โ0โ0+0&โ0+2+9)]a = [โ 8(11&0&0@0&11&0@0&0&11)] = 11 [โ 8(1&0&0@0&1&0@0&0&1)] = 11I Calculating |A| I |A|I = 11I Thus, A (adj(A)) = (adj A) A = |A| I = 11I Hence Proved