




Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 4.4
Ex 4.4, 2
Ex 4.4, 3 Important
Ex 4.4, 4 Important You are here
Ex 4.4, 5
Ex 4.4, 6 Important
Ex 4.4, 7
Ex 4.4, 8
Ex 4.4, 9
Ex 4.4, 10 Important
Ex 4.4, 11 Important
Ex 4.4, 12
Ex 4.4, 13
Ex 4.4, 14 Important
Ex 4.4, 15 Important
Ex 4.4, 16
Ex 4.4, 17 (MCQ) Important
Ex 4.4, 18 (MCQ) Important
Last updated at June 11, 2023 by Teachoo
Ex 4.4, 4 Verify A (adj A) = (adj A) A = |𝐴|I for A = [■8(1&−1&2@3&0&−2@1&0&3)] Calculating |𝑨| |A| = |■8(1&−1&2@3&0&−2@1&0&3)| = 1 |■8(0&−2@0&3)| – (–1) |■8(3&−2@1&3)| +2 |■8(3&0@1&0)| = 1 (0 – 0) + 1 (9 + 2) +2 (0 – 0) = 11 Calculating adj A adj A = [■8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] A = [■8(1&−1&2@3&0&−2@1&0&3)] M11 = |■8(0&−2@0&3)| = 0(3) – 0(–2) = 0 M12 = |■8(3&−2@1&3)| = 3(3) – 1(–2) = 11 M13 = |■8(3&0@1&0)| = 3(0) – 0(1) = 0 M21 = |■8(−1&2@0&3)| = −1(3) – 0(2) = −3 M22 = |■8(1&2@1&3)| = 1(3) – 1(2) = 1 M23 = |■8(1&−1@1&0)| = 1(0) – 1(−1) = 1 M31 = |■8("−" 1&2@0&"−" 2)| = -1(–2) – 0(2) = 2 M32 = |■8(1&2@3&−2)| = 1(–2) – 3(2) = –8 M33 = |■8(1&−1@3&0)| = 1(0) – 3(−1) = 3 Now, A11 = (–1)1 + 1 M11 = (–1)2 0 = 0 A12 = (–1)1+2 M12 = (–1)3 (11) = –11 A13 = (–1)1+3 M13 = (–1)4 0 = 0 A21 = (–1)2+1 M21 = (–1)3 (−3) = 3 A22 = (–1)2+2 M22 = (–1)4 . 1 = 1 A23 = (–1)2+3 M23 = (–1)5 (1) = −1 A31 = (–1)3+1 M31 = (–1)4 (2) = 2 A32 = (–1)3+2 M32 = (–1)5 (–8) = 8 A33 = (–1)3+3 M33 = (–1)6 (3) = 3 Thus adj (A) = [■8(A11&A21&A31@A12&A22&A32@A33&A23&A33)] = [■8(0&3&2@−11&1&8@0&−1&3)] Calculating A (adj A) [■8(1&−1&2@3&0&−2@1&0&3)] [■8(0&3&2@−11&1&8@0&−1&3)] = [■8(1(0)−1(⤶7−11)+2(0)&1(3)−1(1)+2(−1)&1(2)−1(8)+2(3)@3(0)+0(⤶7−11)+(−2)(0)&3(3)+0(1)+(−2)(−1)&3(2)+0(8)+(−2)(3)@1(0)+0(⤶7−11)+3(0)&1(3)+0(1)+3(−1)&1(2)+0(8)+3(3))] = [■8(0+11+0&3−1−2&2−8+6@0−0−0&9+0+2&6+0−6@0−0+0&3+0−3&2+0+9)] = [■8(11&0&0@0&11&0@0&0&11)] = 11 [■8(1&0&0@0&1&0@0&0&1)] = 11I Calculating (adj A)A [■8(0&3&2@−11&1&8@0&−1&3)] [■8(1&−1&2@3&0&−2@1&0&3)] = [■8(0(1)+3(3)+2(1)&0(−1)+3(0)+2(0)&0(2)+3(−2)+2(3)@−11(1)+1(3)+8(1)&−11(−1)+1(0)+8(0)&−11(2)+1(−2)+8(3)@0(1)+(−1)(3)+3(1)&0(−1)+(−1)(0)+3(0)&0(2)+(−1)(−2)+3(3))] = [■8(0+9+2&−0+0+0&0−6+6@−11+3+8&11+0+0&−22−2+24@0−3+3&−0−0+0&−0+2+9)]a = [■8(11&0&0@0&11&0@0&0&11)] = 11 [■8(1&0&0@0&1&0@0&0&1)] = 11I Calculating |A| I |A|I = 11I Thus, A (adj(A)) = (adj A) A = |A| I = 11I Hence Proved