




Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 4.5
Ex 4.5, 2
Ex 4.5, 3 Important
Ex 4.5, 4 Important
Ex 4.5, 5
Ex 4.5, 6 Important
Ex 4.5, 7
Ex 4.5, 8
Ex 4.5, 9
Ex 4.5, 10 Important
Ex 4.5, 11 Important
Ex 4.5, 12
Ex 4.5, 13
Ex 4.5, 14 Important
Ex 4.5, 15 Important
Ex 4.5, 16 You are here
Ex 4.5, 17 (MCQ) Important
Ex 4.5, 18 (MCQ) Important
Last updated at March 16, 2023 by Teachoo
Ex4.5, 16 If A = 2−11−12−11−12 verify that A3 − 6A2 + 9A − 4I = O and hence find A−1 Calculating A2 A2 = A.A = 2−11−12−11−12 2−11−12−11−12 = 2 2+ −1 −1+1(1)2 −1+ −1 2+1(−1)2 1+ −1 −1+1(2)−1 2+2 −1+(−1)(1)−1 −1+2 2+(−1)(−1)−1 1+2 −1+(−1)(2)1 2+ −1 −1+2(1)1 −1+ −1 2+2(−1)1 1+ −1 −1+2(2) = 4+1+1−2−2−12+1+2−2−2−11+4+1−1−2−22+1+2−1−2−21+1+4 = 6−55−56−55−56 Hence A2 = 6−55−56−55−56 Calculating A3 A3 = A2 . A = 6−55−56−55−56 2−11−12−11−12 = 6 2+ −5 −1+5(1)6 −1+ −5 2+5(−1)6 1+ −5 −1+5(2)−5 2+6 −1+(−5)(1)−5 −1+6 2+(−5)(−1)−5 1+6 −1+(−5)(2)5 2+ −5 −1+6(1)5 −1+ −5 2+6(−1)5 1+ −5 −1+6(2) = 12+5+5−6−10−56+5+10−10−6−55+12+5−5−6−1010+5+6−5−10−65+5+12= 22−2121−2122−2121−2122 Hence, A3 = 22−2121−2122−2121−2122 Now, putting values in A3 – 6A2 +9A – 4I = 22−2121−2122−2221−2122 – 6 6−55−56−55−56 + 9 2−11−12−11−12 – 4 100010001 = 22−2121−2122−2221−2122 – 6(6)6(−5)6(5)6(−5)6(6)6(−5)6(5)6(−5)6(6) + 9(2)9(−1)9(1)9(−1)9(2)9(−1)9(1)9(−1)9(2) – 4(1)0004(1)0004(1) = 22−2121−2122−2221−2122 – 36−3030−3036−3030−3030 + 18−99−918−99−918 – 400040004 = 22−36+18+4−21− −30+ −9+021−30+9+0−21− −30+ −96022−36+18+4−22− −30+ −9+021−30+9+0−21− −30+ −9+022−36+18+4 = 36−36−21+30−930−30−21+30−936−36−21+30−930−30−21+30−936−36 = 000000000 = O Hence proved Now calculating A-1 using A3 – 6A2 + 9A – 4I = 0 Post multiplying by A-1 both side (A3 – 6A2 + 9A – 4I ) A-1 = 0.A-1 A3 . A-1 – 6A2 . A + 9AA-1 – 4IA-1 = 0 A2 . AA-1 – 6A. A-1 A + 9AA-1 – 4IA-1 = 0 A2 I – 6AI + 9I – 4IA-1 = 0 A2 – 6A + 9I – 4A-1 = 0 4A-1 = A2 – 6A + 9I A-1 = 14 (A2 – 6A + 9I) Putting value A-1 = 14 6−55−56−55−56 − 6 2−11−12−11−12 + 9 100010001 = 14 6−55−56−55−56 − (6)26(−1)6(1)(6)(−1)6(2)6(−1)6(1)6(−1)6(2)+ 9(1)0009(1)0009(1) = 14 6−55−56−55−56 − 12−66−612−66−612 + 900090009 = 14 6−12+9−5+6+05−6+0−5+6+06−12+9−5+6+05−6+0−5+6+06−12+9 = 14 31−1131−113 Hence, A – 1 = 𝟏𝟒 𝟑𝟏−𝟏𝟏𝟑𝟏−𝟏𝟏𝟑