Check sibling questions

    Slide66.JPG

Slide67.JPG
Slide68.JPG Slide69.JPG Slide70.JPG Slide71.JPG

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 4.4, 16 If A = [■8(2&−1&1@−1&2&−1@1&−1&2)] verify that A3 − 6A2 + 9A − 4I = O and hence find A−1 Calculating A2 A2 = A.A = [■8(2&−1&1@−1&2&−1@1&−1&2)] [■8(2&−1&1@−1&2&−1@1&−1&2)] =[■8(2(2)+(−1)(−1)+1(1)&2(−1)+(−1)(2)+1(−1)&2(1)+(−1)(−1)+1(2)@−1(2)+2(−1)+(−1)(1)&−1(−1)+2(2)+(−1)(−1)&−1(1)+2(−1)+(−1)(2)@1(2)+(−1)(−1)+2(1)&1(−1)+(−1)(2)+2(−1)&1(1)+(−1)(−1)+2(2))] = [■8(4+1+1&−2−2−1&2+1+2@−2−2−1&1+4+1&−1−2−2@2+1+2&−1−2−2&1+1+4)] = [■8(6&−5&5@−5&6&−5@5&−5&6)] Calculating A3 A3 = A2 . A = [■8(6&−5&5@−5&6&−5@5&−5&6)] [■8(2&−1&1@−1&2&−1@1&−1&2)] = [■8(6(2)+(−5)(−1)+5(1)&6(−1)+(−5)(2)+5(−1)&6(1)+(−5)(−1)+5(2)@−5(2)+6(−1)+(−5)(1)&−5(−1)+6(2)+(−5)(−1)&−5(1)+6(−1)+(−5)(2)@5(2)+(−5)(−1)+6(1)&5(−1)+(−5)(2)+6(−1)&5(1)+(−5)(−1)+6(2))] =[■8(12+5+5&−6−10−5&6+5+10@−10−6−5&5+12+5&−5−6−10@10+5+6&−5−10−6&5+5+12)] = [■8(22&−21&21@−21&22&−21@21&−21&22)] Now, putting values in A3 – 6A2 +9A – 4I = [■8(22&−21&21@−21&22&−22@21&−21&22)] – 6[■8(6&−5&5@−5&6&−5@5&−5&6)] + 9 [■8(2&−1&1@−1&2&−1@1&−1&2)] – 4 [■8(1&0&0@0&1&0@0&0&1)] = [■8(22&−21&21@−21&22&−22@21&−21&22)] – [■8(6(6)&6(−5)&6(5)@6(−5)&6(6)&6(−5)@6(5)&6(−5)&6(6))] + [■8(9(2)&9(−1)&9(1)@9(−1)&9(2)&9(−1)@9(1)&9(−1)&9(2))] – [■8(4(1)&0&0@0&4(1)&0@0&0&4(1))] =[■8(22&−21&21@−21&22&−22@21&−21&22)] – [■8(36&−30&30@−30&36&−30@30&−30&30)] + [■8(18&−9&9@−9&18&−9@9&−9&18)] – [■8(4&0&0@0&4&0@0&0&4)] = [■8(22−36+18+4&−21−(−30)+(−9)+0&21−30+9+0@−21−(−30)+(−9)60&22−36+18+4&−22−(−30)+(−9)+0@21−30+9+0&−21−(−30)+(−9)+0&22−36+18+4)] = [■8(36−36&−21+30−9&30−30@−21+30−9&36−36&−21+30−9@30−30&−21+30−9&36−36)] = [■8(0&0&0@0&0&0@0&0&0)] = O Hence proved Now calculating A-1 using A3 – 6A2 + 9A – 4I = 0 Post multiplying by A-1 both side (A3 – 6A2 + 9A – 4I ) A-1 = 0.A-1 A3 . A-1 – 6A2 . A + 9AA-1 – 4IA-1 = 0 A2 . AA-1 – 6A. A-1 A + 9AA-1 – 4IA-1 = 0 A2 I – 6AI + 9I – 4IA-1 = 0 A2 – 6A + 9I – 4A-1 = 0 4A-1 = A2 – 6A + 9I A-1 = 1/4 (A2 – 6A + 9I) Putting value A-1 = 1/4 ([■8(6&−5&5@−5&6&−5@5&−5&6)]" − 6 " [■8(2&−1&1@−1&2&−1@1&−1&2)]" + 9 " [■8(1&0&0@0&1&0@0&0&1)]) = 1/4 ([■8(6&−5&5@−5&6&−5@5&−5&6)]" − " [■8((6)2&6(−1)&6(1)@(6)(−1)&6(2)&6(−1)@6(1)&6(−1)&6(2))]"+ " [■8(9(1)&0&0@0&9(1)&0@0&0&9(1))]) = 1/4 ([■8(6&−5&5@−5&6&−5@5&−5&6)]" − " [■8(12&−6&6@−6&12&−6@6&−6&12)]" + " [■8(9&0&0@0&9&0@0&0&9)]) = 1/4 ([■8(6−12+9&−5+6+0&5−6+0@−5+6+0&6−12+9&−5+6+0@5−6+0&−5+6+0&6−12+9)]" " ) = 1/4 [■8(3&1&−1@1&3&1@−1&1&3)] Hence, A – 1 = 𝟏/𝟒 [■8(𝟑&𝟏&−𝟏@𝟏&𝟑&𝟏@−𝟏&𝟏&𝟑)]

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.