Ex 4.4, 8 - Chapter 4 Class 12 Determinants
Last updated at April 16, 2024 by Teachoo
Ex 4.4
Ex 4.4, 2
Ex 4.4, 3 Important
Ex 4.4, 4 Important
Ex 4.4, 5
Ex 4.4, 6 Important
Ex 4.4, 7
Ex 4.4, 8 You are here
Ex 4.4, 9
Ex 4.4, 10 Important
Ex 4.4, 11 Important
Ex 4.4, 12
Ex 4.4, 13
Ex 4.4, 14 Important
Ex 4.4, 15 Important
Ex 4.4, 16
Ex 4.4, 17 (MCQ) Important
Ex 4.4, 18 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 4.4, 8 Find the inverse of each of the matrices (if it exists). [■8(1&0&0@3&3&0@5&2&−1)] Let A = [■8(1&0&0@3&3&0@5&2&−1)] We know that A–1 = 1/(|A|) (adj A) exists if |A|≠ 0 Step 1: Calculate |A| |A| = |■8(1&0&0@3&3&0@5&2&−1)| = 1 |■8(3&0@2&−1)| – 0 |■8(3&0@5&1)| + 0|■8(3&3@5&2)| = 1(–3 – 0) + 0 + 0 = −3 Since |A| ≠ 0 , A–1 exists Step 2: Calculate adj A adj (A) = [■8(A11&A21&A31@A12&A22&A32@A33&A23&A33)] A = [■8(1&0&0@3&3&0@5&2&−1)] M11 = |■8(3&0@2&−1)| = 3(−1) – 2(0) = −3 M12 = |■8(3&0@5&−1)| = 3(–1) – 0(5) = – 3 M13 = |■8(3&3@5&2)| = 3(2) – 5(3) = – 9 M21 = |■8(0&0@2&–1)| = 0(–1) – 2(0) = 0 M22 = |■8(1&0@5&−1)| = 1(– 1) – 0 = – 1 M23 = |■8(1&0@5&2)| = 2(1) – 5(0) = 2 M31 = |■8(0&0@3&0)| = 0(0) – 3(0) = 0 M32 = |■8(1&0@3&0)| = 1(0) – 3(0) = 0 M33 = |■8(1&0@3&3)| = 1(3) – 3(0) = 3 A11 = ( – 1)1 + 1 M11 = ( – 1)2 (– 3) = 1 ( – 3) = – 3 A12 = ( – 1)1+2 M12 = ( – 1)3 ( – 3) = ( – 1) (– 3) = 3 A13 = ( – 1)1+3 M13 = ( – 1)4 ( – 9) = 1 . (– 9) = – 9 A21 = ( – 1)2+1 M21 = ( – 1)3 (0) = 0 A22 = ( – 1)2+2 M22 = ( – 1)4 ( – 1) = 1 . ( – 1) = −1 A23 = ( – 1)2+3 M23 = ( – 1)5 (2) = – 1 (2) = – 2 A31 = ( – 1)3+1 M31 = ( – 1)4 (2) = 0 A32 = ( – 1)3+2 M32 = ( – 1)5 (0) = 0 A33 = ( – 1)3+3 M33 = ( – 1)6 3 = 3 ∴ adj (A) = [■8(A11&A21&A31@A12&A22&A32@A33&A23&A33)] = [■8(−3&0&0@3&−1&0@−9&−2&3)] Step 3: Calculate A–1 A– 1 = 1/(|A|) ( adj (A)) = 1/(−3) [■8(−3&0&0@3&−1&0@−9&−2&3)] = (−𝟏)/𝟑 [■8(−𝟑&𝟎&𝟎@𝟑&−𝟏&𝟎@−𝟗&−𝟐&𝟑)]