Slide53.JPG

Slide54.JPG
Slide55.JPG
Slide56.JPG


Transcript

Ex 4.4, 13 If A = [■8(3&1@−1&2)] show that A2 – 5A + 7I = O. Hence find A–1. Calculating A2 A2 = A.A = [■8(3&1@−1&2)] [■8(3&1@−1&2)] =[■8(3(3)+1(−1)&3(1)+1(2)@−1(3)+2(−1)&−1(1)+2(2))] = [■8(9−1&3+2@−3−2&−1+4)] = [■8(8&5@−5&3)] Solving L.H.S A2 – 5A + 7I = [■8(8&5@−5&3)] – 5 [■8(3&1@−1&2)] + 7 [■8(1&0@0&1)] = [■8(8&5@−5&3)] – [■8(5(3)&5(1)@5(−1)&5(2))] + [■8(7(1)&7(0)@7(0)&7(1))] = [■8(8&5@−5&3)] – [■8(15&5@−5&10)] + [■8(7&0@0&7)] = [■8(8−15+7&5−5+0@−5−(−5)+0&3−10+7)] = [■8(8−15+7&5−5+0@−5+5+0&3−10+7)] = [■8(0&0@0&0)] = O Thus, A2 – 5A + 7I = O Hence proved Finding A–1 A2 – 5A + 7I = O Pre multiplying A-1 both sides A-1 (A2 – 5A + 7I ) = A-1 O A-1 . A2 – 5A-1A + 7A-1 = O A-1 AA – 5(A-1 A) + 7A-1 = O (A-1A)A – 5 (A-1 A) + 7 (A-1 I) = O IA – 5I + 7A-1 = O A – 5I + 7 A-1 = 0 7A-1 = 5I – A A-1 = 𝟏/𝟕 (5I – A) Putting values A-1 = 1/7 (5[■8(1&0@0&1)]−[■8(3&1@−1&2)]) = 1/7 ([■8(5&0@0&5)]−[■8(3&1@−1&2)]) = 1/7 ([■8(5−3&0−1@0−(−1)&5−2)]) = 1/7 [■8(2&−1@1&3)] Thus, A-1 = 𝟏/𝟕 [■8(𝟐&−𝟏@𝟏&𝟑)]

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.