



Are ads bothering you?
Ex 4.5
Ex 4.5, 2
Ex 4.5, 3 Important
Ex 4.5, 4 Important
Ex 4.5, 5
Ex 4.5, 6 Important
Ex 4.5, 7
Ex 4.5, 8
Ex 4.5, 9
Ex 4.5, 10 Important You are here
Ex 4.5, 11 Important
Ex 4.5, 12
Ex 4.5, 13
Ex 4.5, 14 Important
Ex 4.5, 15 Important
Ex 4.5, 16
Ex 4.5, 17 (MCQ) Important
Ex 4.5, 18 (MCQ) Important
Last updated at Jan. 22, 2020 by Teachoo
Ex 4.5, 10 Find the inverse of each of the matrices (if it exists). [■8(1&−1&2@0&2&−3@3&−2&4)] Let A =[■8(1&−1&2@0&2&−3@3&−2&4)] We know that A–1 = 1/(|A|) (adj A) exists if |A|≠ 0 Calculating |A| |A| = |■8(1&−1&2@0&2&−3@3&−2&4)| = 1 |■8(2&−3@−2&4)|– (– 1)|■8(0&−3@3&4)| + 2|■8(0&2@3&−2)| = 1(8 – 6) + 1 (0 + 9) + 2 (0 – 6) = 1 (2) + 1 (9) + 2 ( – 6) = –1 Since |A| ≠ 0, A–1 exists Calculating (adj A) adj (A) = [■8(A11&A21&A31@A12&A22&A32@A13&A23&A33)] A = [■8(1&−1&2@0&2&−3@3&−2&4)] M11 = |■8(2&−3@−2&4)|=2(4)–(−2)(−3)= 2 M12 = |■8(0&−3@3&4)| = 0(4) – 3(−3) = 9 M13 = |■8(0&2@3&−2)|= 0(-2) – 3(2) = –6 M21 = |■8(−1&2@−2&4)|=(–1)(4)–(−2)(2) = 0 M22 = |■8(1&2@3&4)| = 1(4) – 3(2) = –2 M23 = |■8(1&−1@3&−2)| = 1(-2) – 3(−1) = 1 M31 = |■8(−1&2@2&−3)| =(–1)(–3)–2(2)= –1 M32 = |■8(1&2@0&−3)| = 1(-3) – 0(2) = –3 M33 = |■8(1&−1@0&2)| = 1(2) – 0(−1) = 2 Now, A11 = (–1)1 + 1 M11 = (–1)2 2 = 2 A12 = (–1)1+2 M12 = (–1)3 9 = –9 A13 = (–1)1+3 M13 = (–1)4 (–6) = –6 A21 = (–1)2+1 M21 = (–1)3 0 = 0 A22 = (–1)2+2 M22 = (–1)4 (–2) = –2 A23 = (–1)2+3 M23 = (–1)5 (1) = (–1) (1) = (–1) A31 = (–1)3+1 M31 = (–1)4 (–1) = 1 (–1) = –1 A32 = (–1)3+2 M32 = (–1)5 (–3) = (–1) (–3) = 3 A33 = (–1)3+3 M33 = (–1)6 (2) = 2 adj (A) = [■8(A11&A21&A31@A12&A22&A32@A33&A23&A33)] = [■8(2&0&−1@−9&−2&3@−6&−1&2)] Calculating inverse A– 1 = 1/(|A|) ( adj (A)) = 1/(−1) [■8(2&0&−1@−9&−2&3@−6&−1&2)] = –[■8(2&0&−1@−9&−2&3@−6&−1&2)] = [■8(−𝟐&𝟎&𝟏@𝟗&𝟐&−𝟑@𝟔&𝟏&−𝟐)]