# Ex 4.5, 12 - Chapter 4 Class 12 Determinants (Term 1)

Last updated at Jan. 22, 2020 by Teachoo

Ex 4.5

Ex 4.5, 1

Ex 4.5, 2

Ex 4.5, 3 Important

Ex 4.5, 4 Important

Ex 4.5, 5

Ex 4.5, 6 Important

Ex 4.5, 7

Ex 4.5, 8

Ex 4.5, 9

Ex 4.5, 10 Important

Ex 4.5, 11 Important

Ex 4.5, 12 You are here

Ex 4.5, 13

Ex 4.5, 14 Important

Ex 4.5, 15 Important

Ex 4.5, 16

Ex 4.5, 17 (MCQ) Important

Ex 4.5, 18 (MCQ) Important

Chapter 4 Class 12 Determinants (Term 1)

Serial order wise

Ex 4.5, 12 Let A = [■8(3&7@2&5)] and B = [■8(6&8@7&9)] verify that (AB)-1 = B-1 A-1 Taking L.H.S (AB)–1 First calculating AB AB = [■8(3&7@2&5)] [■8(6&8@7&9)] = [■8(3(6)+7(7)&3(8)+7(9)@2(6)+5(7)&2(8)+5(9))] = [■8(18+49&24+63@12+35&16+45)] = [■8(67&87@47&61)] Now, (AB)-1 = 1/(|AB|) adj (AB) exists if |AB| ≠ 0 |AB| = |■8(67&87@47&61)| = 67 (61) – 47(87) = 4087 – 4089 = –2 Since |AB| ≠ 0 ∴ (AB)–1 exists Now, AB = [■8(67&87@47&61)] adj (AB) = [■8(67&87@47&61)] = [■8(61&−87@−47&67)] Thus, (AB)–1 = 1/(|AB|) adj (AB) Putting values = 1/(−2) [■8(61&−87@−47&67)] Taking R.H.S B-1A-1 First Calculating B-1 B–1 = 1/(|B|) adj (B) exist if |B|≠ 0 Now, |B| = |■8(6&8@7&9)| = 6(9) – 7(8) = 54 – 56 = –2 Since |B|≠ 0 ∴ B–1 exists Now, B = [■8(6&8@7&9)] adj B = [■8(6&8@7&9)] = [■8(9&−8@−7&6)] Thus, B–1 = 1/(|B|) adj (B) = 1/(−2) [■8(9&−8@−7&6)] Calculating A-1 A-1 = 1/(|A|) adj (A) exist if |A| ≠ 0 |A| = |■8(3&7@2&5)| = 15 – 14 = 1 Since |A| ≠ 0, A-1 exists A = [■8(3&7@2&5)] adj A = [■8(3&7@2&5)] = [■8(5&−7@−2&3)] So, A–1 = 1/(|A|) adj (A) = 1/1 [■8(5&−7@−2&3)] = [■8(5&−7@−2&3)] Now B-1 A-1 = (−1)/2 [■8(9&−8@−7&6)] [■8(5&−7@−2&3)] = (−1)/2 [■8(9(5)+( –8)( –2)&9(−7)+(−8)(3)@ –7(5)+6( –2)&−7(−7)+6(3))] = (−1)/2 [■8(45+16&−63−24@−35−12&49+18)]