Slide53.JPG Slide54.JPG Slide55.JPG Slide56.JPG

Share on WhatsApp

Transcript

Ex 4.4, 13 If A = [■8(3&1@−1&2)] show that A2 – 5A + 7I = O. Hence find A–1. Calculating A2 A2 = A.A = [■8(3&1@−1&2)] [■8(3&1@−1&2)] =[■8(3(3)+1(−1)&3(1)+1(2)@−1(3)+2(−1)&−1(1)+2(2))] = [■8(9−1&3+2@−3−2&−1+4)] = [■8(8&5@−5&3)] Solving L.H.S A2 – 5A + 7I = [■8(8&5@−5&3)] – 5 [■8(3&1@−1&2)] + 7 [■8(1&0@0&1)] = [■8(8&5@−5&3)] – [■8(5(3)&5(1)@5(−1)&5(2))] + [■8(7(1)&7(0)@7(0)&7(1))] = [■8(8&5@−5&3)] – [■8(15&5@−5&10)] + [■8(7&0@0&7)] = [■8(8−15+7&5−5+0@−5−(−5)+0&3−10+7)] = [■8(8−15+7&5−5+0@−5+5+0&3−10+7)] = [■8(0&0@0&0)] = O Thus, A2 – 5A + 7I = O Hence proved Finding A–1 A2 – 5A + 7I = O Pre multiplying A-1 both sides A-1 (A2 – 5A + 7I ) = A-1 O A-1 . A2 – 5A-1A + 7A-1 = O A-1 AA – 5(A-1 A) + 7A-1 = O (A-1A)A – 5 (A-1 A) + 7 (A-1 I) = O IA – 5I + 7A-1 = O A – 5I + 7 A-1 = 0 7A-1 = 5I – A A-1 = 𝟏/𝟕 (5I – A) Putting values A-1 = 1/7 (5[■8(1&0@0&1)]−[■8(3&1@−1&2)]) = 1/7 ([■8(5&0@0&5)]−[■8(3&1@−1&2)]) = 1/7 ([■8(5−3&0−1@0−(−1)&5−2)]) = 1/7 [■8(2&−1@1&3)] Thus, A-1 = 𝟏/𝟕 [■8(𝟐&−𝟏@𝟏&𝟑)]

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo