Learn All Concepts of Chapter 3 Class 12 Matrices - FREE. Check - Matrices Class 12 - Full video

Last updated at Jan. 17, 2020 by Teachoo

Transcript

Ex 3.2, 21 (Introduction) Assume X, Y, Z, W and P are matrices of order 2 n, 3 k, 2 p, n 3 , and p k respectively. The restriction on n, k and p so that PY +WY will be defined are: (A) k = 3, p = n (B) k is arbitrary, p = 2 (C) p is arbitrary, k = 3 (D) k = 2, p = 3 Ex 3.2, 21 Assume X, Y, Z, W and P are matrices of order 2 n, 3 k, 2 p, n 3 , and p k respectively. The restriction on n, k and p so that PY +WY will be defined are: (A) k = 3, p = n (B) k is arbitrary, p = 2 (C) p is arbitrary, k = 3 (D) k = 2, p = 3 Order of P is p k Order of Y is 3 k PY = [P]_(p k) [Y]_(3 ) This is possible only if k = 3 So, PY_( ) Now, PY_( ) + WY_( ) is possible if p k = n k p = n Thus p = n and k = 3 Hence, correct answer is A

Ex 3.2

Ex 3.2, 1

Ex 3.2, 2

Ex 3.2, 3

Ex 3.2, 4

Ex 3.2, 5

Ex 3.2, 6

Ex 3.2, 7 Important

Ex 3.2, 8

Ex 3.2, 9

Ex 3.2, 10

Ex 3.2, 11

Ex 3.2, 12 Important

Ex 3.2, 13 Important

Ex 3.2, 14

Ex 3.2, 15

Ex 3.2, 16 Important

Ex 3.2, 17 Important

Ex 3.2, 18 Important

Ex 3.2, 19 Important

Ex 3.2, 20 Important

Ex 3.2, 21 Important You are here

Ex 3.2, 22 Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.