Last updated at May 29, 2018 by Teachoo

Transcript

Ex 3.2,1 Let A = [ 8(2&4@3&2)], B = [ 8(1&3@ 2&5)], C = [ 8( 2&5@3&4)] Find each of the following (i) A + B A + B = [ 8(2&4@3&2)] + [ 8( 1&3@ 2&5)] = [ 8(2+1&4+3@3 2&2+5)] = [ 8(3&7@1&7)] Ex 3.2,1 Let A = [ 8(2&4@3&2)], B = [ 8(1&3@ 2&5)], C = [ 8( 2&5@3&4)] Find each of the following (ii) A B A B = [ 8(2&4@3&2)] [ 8( 1&3@ 2&5)] = [ 8(2 1&4 3@3 ( 2)&2 5)] = [ 8(1&1@3+2& 3)] = [ 8(1&1@5& 3)] Ex 3.2,1 Let A = [ 8(2&4@3&2)], B = [ 8(1&3@ 2&5)], C = [ 8( 2&5@3&4)] Find each of the following 3A C Finding 3A 3A = 3[ 8(2&4@3&2)] = [ 8(3 2&3 4@3 3 &3 2)] = [ 8(6&12@9&6)] Hence 3A C = [ 8(6&12@9&6)] 7 [ 8( 2&5@3&4)] = [ 8(6 ( 2)&12 5@9 3&6 4)] Ex 3.2, 1 Let A = [ 8(2&4@3&2)] B = [ 8(1&3@ 2&5)] , C = [ 8( 2&5@3&4)]. Find each of the following (iv) AB AB = [ 8(2&4@3&2)] [ 8(1&3@ 2&5)] AB = [ 8(2 1+4 2 &2 3+4 5@3 1+2 2&3 3+2 5)] = [ 8(2 8&6+20@3 4&9+10)] = [ 8( 6&26@ 1&19)] Ex 3.2, 1 Let A = [ 8(2&4@3&2)] B = [ 8(1&3@ 2&5)] , C = [ 8( 2&5@3&4)]. Find each of the following (v) BA BA = [ 8(1&3@ 2&5)] [ 8(2&4@3&2)] = [ 8(1 2+3 3 &1 4+3 2@ 2 2+5 3& 2 4+5 2)] = [ 8(2+9&4+6@ 4+15& 8+10)] = [ 8(11&10@11&2)]

Ex 3.2

Ex 3.2, 1
You are here

Ex 3.2, 2

Ex 3.2, 3

Ex 3.2, 4

Ex 3.2, 5

Ex 3.2, 6

Ex 3.2, 7 Important

Ex 3.2, 8

Ex 3.2, 9

Ex 3.2, 10

Ex 3.2, 11

Ex 3.2, 12 Important

Ex 3.2, 13 Important

Ex 3.2, 14

Ex 3.2, 15

Ex 3.2, 16 Important

Ex 3.2, 17 Important

Ex 3.2, 18 Important

Ex 3.2, 19 Important

Ex 3.2, 20 Important

Ex 3.2, 21 Important

Ex 3.2, 22 Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.