

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 3.2
Ex 3.2, 2 (i)
Ex 3.2, 2 (ii) Important
Ex 3.2, 2 (iii)
Ex 3.2, 2 (iv)
Ex 3.2, 3 (i)
Ex 3.2, 3 (ii) Important
Ex 3.2, 3 (iii)
Ex 3.2, 3 (iv) Important
Ex 3.2, 3 (v)
Ex 3.2, 3 (vi) Important
Ex 3.2, 4
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 (i)
Ex 3.2, 7 (ii) Important
Ex 3.2, 8
Ex 3.2, 9
Ex 3.2, 10
Ex 3.2, 11
Ex 3.2, 12 Important
Ex 3.2, 13 Important
Ex 3.2, 14
Ex 3.2, 15
Ex 3.2, 16 Important
Ex 3.2, 17 Important You are here
Ex 3.2, 18
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 (MCQ) Important
Ex 3.2, 22 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 3.2, 17 If A = [■8(3&−[email protected]&−2)] and I= [■8(1&[email protected]&1)] , find k so that A2 = kA – 2I Finding A2 A2 = A × A = [■8(3&−[email protected]&−2)][■8(3&−[email protected]&−2)] = [■8(3(3)+(−2)(4)&3(−2)+(−2)(−2)@4(3)+(−2)(4)&4(−2)+(−2)(−2))] = [■8(9−8&−[email protected]−8&−8+4)] = [■8(1&−[email protected]&−4)] ∴ A2 = [■8(1&−[email protected]&−4)] Now , given that A2 = kA – 2I Putting values [■8(1&−[email protected]&−4)] = k [■8(3&−[email protected]&−2)] − 2 [■8(1&[email protected]&1)] [■8(1&−[email protected]&−4)] = [■8(3k&−[email protected]&−2k)] − [■8(1×2&0×[email protected]×2&1×2)] [■8(1&−[email protected]&−4)] = [■8(3k&−[email protected]&−2k)] − [■8(2&[email protected]&2)] [■8(1&−[email protected]&−4)] = [■8(3k−2&−2k−[email protected]−0&−2k−2)] [■8(1&−[email protected]&−4)] = [■8(3k−2&−[email protected]&−2k−2)] Since matrices are equal. Comparing its corresponding elements. 1 = 3k – 2 1 + 2 = 3k 3 = 3k 3/3 = k 1 = k k = 1 Thus, k = 1