Learn All Concepts of Chapter 3 Class 12 Matrices - FREE. Check - Matrices Class 12 - Full video




Last updated at March 30, 2020 by Teachoo
Transcript
Ex 3.2, 18 If A =[β 8(0&βtan πΌ/2 " " @tan πΌ/2 " " &0)] and I is the identity matrix of order 2, Show that I + A = ( I β A)[β 8(cosβ‘πΌ&βsinβ‘πΌ@sinβ‘πΌ&cosβ‘πΌ )] Given I the identity matrix of order 2 i.e. I = [β 8(1&0@0&1)] Taking L.H.S. I + A = [β 8(1&0@0&1)] + [β 8(0&βtan πΌ/2 " " @tan πΌ/2 " " &0)] = [β 8(1+0&0βtan πΌ/2 " " @0+tan πΌ/2 " " &1+0)] = [β 8(1&βtan πΌ/2 " " @tan πΌ/2 " " &1)] Taking R.H.S (I β A) [β 8(cosβ‘πΌ&βsinβ‘πΌ@sinβ‘πΌ&cosβ‘πΌ )] = (" " [β 8(1&0@0&1)]β[β 8(0&βtan πΌ/2 " " @tan πΌ/2 " " &0)]) [β 8(cosβ‘πΌ&βsinβ‘πΌ@sinβ‘πΌ&cosβ‘πΌ )] = [β 8(1β0&0+tan πΌ/2 " " @0βtan πΌ/2 " " &1)][β 8(cosβ‘πΌ&βsinβ‘πΌ@sinβ‘πΌ&cosβ‘πΌ )] = [β 8(1&tan Ξ±/2 " " @β tan Ξ±/2 " " &1)][β 8(cosβ‘πΌ&βsinβ‘πΌ@sinβ‘πΌ&cosβ‘πΌ )] = [β 8(1(πππ β‘πΌ )+π‘ππ πΌ/2 (π ππβ‘πΌ)&1(γβπ ππγβ‘πΌ )+π‘ππ πΌ/2 (π ππβ‘πΌ)@βπ‘ππ πΌ/2 (πππ β‘πΌ )+1(π ππβ‘πΌ) &βπ‘ππ πΌ/2 (γβπ ππγβ‘πΌ )+1(π ππβ‘πΌ))] = [β 8(1((1 β π‘ππ2 πΌ/2)/(1 + π‘ππ2 πΌ/2))"+ " π‘ππ πΌ/2 ((2 tanβ‘γ πΌ/2γ)/(1 + π‘ππ2 πΌ/2))" " &1((β2 tanβ‘γ πΌ/2γ)/(1 + π‘ππ2 ( πΌ)/2))"+(" π‘ππ πΌ/2) ((1 β π‘ππ2 ( πΌ)/2)/(1 + π‘ππ2 ( πΌ)/2))" " @βπ‘ππ πΌ/2 ((1 β π‘ππ2 ( πΌ)/2)/(1 + π‘ππ2 ( πΌ)/2))" +1" ((2 tanβ‘γ πΌ/2γ)/(1 + π‘ππ2 πΌ/2))&βπ‘ππ πΌ/2 ((β2 γtan γβ‘γπΌ/2γ)/(1 + π‘ππ2 πΌ/2))" +1" ((1 β π‘ππ2 ( πΌ)/2)/(1 + π‘ππ2 πΌ/2)) )] We know that cos 2ΞΈ = (1 β π‘ππ2π)/(1 + π‘ππ2π) & sin 2ΞΈ = (2 tanβ‘π)/(1 + π‘ππ2π) Replacing ΞΈ with π/2 So, cos ΞΈ = (1 β π‘ππ2 π/2)/(1 + π‘ππ2 π/2) & sin ΞΈ = (2 π‘ππβ‘γ π/2γ)/(1 + π‘ππ2 π/2) = [β 8((1 β π‘ππ2 πΌ/2)/(1 + π‘ππ2 πΌ/2) " +" (2π‘ππ2 πΌ/2)/(1 + π‘ππ2 πΌ/2) " " &(β2 tanβ‘γ πΌ/2γ " +" tanβ‘γ πΌ/2γ β π‘ππ3 πΌ/2)/(1 + π‘ππ2 πΌ/2) " " @(βγtan γβ‘γπΌ/2γ (1 β π‘ππ2 πΌ/2))/(1 + π‘ππ2 πΌ/2) " +" (2 tanβ‘γ πΌ/2γ)/(1 + π‘ππ2 πΌ/2)&(2π‘ππ2 πΌ/2)/(1+π‘ππ2 πΌ/2)+ " " (1 β π‘ππ2 πΌ/2)/(1 + π‘ππ2 πΌ/2))] = [β 8((1 β π‘ππ2 πΌ/2 + 2π‘ππ2 πΌ/2)/(1 + π‘ππ2 πΌ/2) " " &(β2 γtan γβ‘γ πΌ/2γ " + " tanβ‘γ πΌ/2γ β π‘ππ3 πΌ/2)/(1 + π‘ππ2 πΌ/2) " " @(βγtan γβ‘γπΌ/2γ + π‘ππ3 πΌ/2 +2 tanβ‘γ πΌ/2γ)/(1 + π‘ππ2 πΌ/2) " " &" " (2π‘ππ2 πΌ/2 + 1 β π‘ππ2 πΌ/2)/(1 + π‘ππ2 πΌ/2))] = [β 8((1 + π‘ππ2 πΌ/2 )/(1 + π‘ππ2 πΌ/2) " " &(βγtan γβ‘γπΌ/2γ " " (1 + π‘ππ2 πΌ/2) )/(1 + π‘ππ2 πΌ/2) " " @(γtan γβ‘γπΌ/2γ (1 + π‘ππ2 πΌ/2))/(1 + π‘ππ2 πΌ/2) " " &" " (1 + π‘ππ2 πΌ/2 )/(1 + π‘ππ2 ( πΌ)/2))] = [β 8(1&βtan πΌ/2 " " @tan πΌ/2 " " &1)] = R.H.S. Hence proved
Ex 3.2
Ex 3.2, 2
Ex 3.2, 3
Ex 3.2, 4
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 Important
Ex 3.2, 8
Ex 3.2, 9
Ex 3.2, 10
Ex 3.2, 11
Ex 3.2, 12 Important
Ex 3.2, 13 Important
Ex 3.2, 14
Ex 3.2, 15
Ex 3.2, 16 Important
Ex 3.2, 17 Important
Ex 3.2, 18 Important You are here
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 Important
Ex 3.2, 22 Important
About the Author