

Ex 3.2
Ex 3.2, 2 (i)
Ex 3.2, 2 (ii) Important
Ex 3.2, 2 (iii)
Ex 3.2, 2 (iv)
Ex 3.2, 3 (i)
Ex 3.2, 3 (ii) Important
Ex 3.2, 3 (iii)
Ex 3.2, 3 (iv) Important
Ex 3.2, 3 (v)
Ex 3.2, 3 (vi) Important
Ex 3.2, 4 You are here
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 (i)
Ex 3.2, 7 (ii) Important
Ex 3.2, 8
Ex 3.2, 9
Ex 3.2, 10
Ex 3.2, 11
Ex 3.2, 12 Important
Ex 3.2, 13 Important
Ex 3.2, 14
Ex 3.2, 15
Ex 3.2, 16 Important
Ex 3.2, 17 Important
Ex 3.2, 18
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 (MCQ) Important
Ex 3.2, 22 (MCQ) Important
Last updated at Dec. 8, 2016 by Teachoo
Ex 3.2, 4 If A = [ 8(1&2& 3@5&0&2@1& 1&1)], B = [ 8(3& 1&2@4&2&5@2&0&3)] and , C = [ 8(4&1&2@0&3&2@1& 2&3)] then compute (A+B) and (B C) . Also, verify that A + (B C) = (A + B) C Calculating A + B A + B = [ 8(1&2& 3@5&0&2@1& 1&1)]+ [ 8(3& 1&2@4&2&5@2&0&3)] = [ 8(1+3&2 1& 3+2@5+4&0+2&2+5@1+2& 1+0&1+3)] = [ 8(4&1& 1@9&2&7@3& 1&4)] Calculating B C B C = [ 8(3& 1&2@4&2&5@2&0&3)] [ 8(4&1&2@0&3&2@1& 2&3)] = [ 8(3 4& 1 1&2 2@4 0&2 3&5 2@2 1&0 ( 2)&3 3)] = [ 8( 1& 2&0@4& 1&3@1&2&0)] We need to verify A + (B C) = (A + B) C Taking L.H.S A + (B C) = [ 8(1&2& 3@5&0&2@1& 1&1)]+ [ 8( 1& 2&0@4& 1&3@1&2&0)] = [ 8(1 1&2 2& 3+0@5+4&0 1&2+3@1+1& 1+2&1+0)] = [ 8(0&0& 3@9& 1&5@2&1&1)] Taking R.H.S (A + B) C = [ 8(4&1& 1@9&2&7@3& 1&4)] [ 8(4&1&2@0&3&2@1& 2&3)] = [ 8(4 4&1 1& 1 2@9 0&2 3&7 2@3 1& 1+2&4 3)] = [ 8(0&0& 3@9& 1&5@2&1&1)] = L.H.S Hence L.H.S = R.H.S Hence proved