Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 3.2

Ex 3.2, 1

Ex 3.2, 2 (i)

Ex 3.2, 2 (ii) Important

Ex 3.2, 2 (iii)

Ex 3.2, 2 (iv)

Ex 3.2, 3 (i)

Ex 3.2, 3 (ii) Important

Ex 3.2, 3 (iii)

Ex 3.2, 3 (iv) Important

Ex 3.2, 3 (v)

Ex 3.2, 3 (vi) Important

Ex 3.2, 4 You are here

Ex 3.2, 5

Ex 3.2, 6

Ex 3.2, 7 (i)

Ex 3.2, 7 (ii) Important

Ex 3.2, 8

Ex 3.2, 9

Ex 3.2, 10

Ex 3.2, 11

Ex 3.2, 12 Important

Ex 3.2, 13 Important

Ex 3.2, 14

Ex 3.2, 15

Ex 3.2, 16 Important

Ex 3.2, 17 Important

Ex 3.2, 18

Ex 3.2, 19 Important

Ex 3.2, 20 Important

Ex 3.2, 21 (MCQ) Important

Ex 3.2, 22 (MCQ) Important

Chapter 3 Class 12 Matrices

Serial order wise

Last updated at June 7, 2023 by Teachoo

Ex 3.2, 4 If A = [■8(1&2&−[email protected]&0&[email protected]&−1&1)], B = [■8(3&−1&[email protected]&2&[email protected]&0&3)] and , C = [■8(4&1&[email protected]&3&[email protected]&−2&3)] then compute (A+B) and (B – C) . Also, verify that A + (B – C) = (A + B) – C Calculating A + B A + B = [■8(1&2&−[email protected]&0&[email protected]&−1&1)]+ [■8(3&−1&[email protected]&2&[email protected]&0&3)] = [■8(1+3&2−1&−[email protected]+4&0+2&[email protected]+2&−1+0&1+3)] = [■8(𝟒&𝟏&−𝟏@𝟗&𝟐&𝟕@𝟑&−𝟏&𝟒)] Calculating B – C B – C = [■8(3&−1&[email protected]&2&[email protected]&0&3)] – [■8(4&1&[email protected]&3&[email protected]&−2&3)] = [■8(3−4&−1−1&2−[email protected]−0&2−3&5−[email protected]−1&0−(−2)&3−3)] = [■8(−𝟏&−𝟐&𝟎@𝟒&−𝟏&𝟑@𝟏&𝟐&𝟎)] We need to verify A + (B – C) = (A + B) – C Solving L.H.S A + (B – C) = [■8(1&2&−[email protected]&0&[email protected]&−1&1)]+ [■8(−1&−2&[email protected]&−1&[email protected]&2&0)] = [■8(1−1&2−2&−[email protected]+4&0−1&[email protected]+1&−1+2&1+0)] = [■8(𝟎&𝟎&−𝟑@𝟗&−𝟏&𝟓@𝟐&𝟏&𝟏)] Solving R.H.S (A + B) – C = [■8(4&1&−[email protected]&2&[email protected]&−1&4)]− [■8(4&1&[email protected]&3&[email protected]&−2&3)] = [■8(4−4&1−1&−1−[email protected]−0&2−3&7−[email protected]−1&−1+2&4−3)] = [■8(𝟎&𝟎&−𝟑@𝟗&−𝟏&𝟓@𝟐&𝟏&𝟏)] = L.H.S Hence L.H.S = R.H.S Hence proved