Ex 3.2
Ex 3.2, 2 (i)
Ex 3.2, 2 (ii) Important
Ex 3.2, 2 (iii)
Ex 3.2, 2 (iv)
Ex 3.2, 3 (i)
Ex 3.2, 3 (ii) Important
Ex 3.2, 3 (iii)
Ex 3.2, 3 (iv) Important
Ex 3.2, 3 (v)
Ex 3.2, 3 (vi) Important
Ex 3.2, 4
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 (i)
Ex 3.2, 7 (ii) Important You are here
Ex 3.2, 8
Ex 3.2, 9
Ex 3.2, 10
Ex 3.2, 11
Ex 3.2, 12 Important
Ex 3.2, 13 Important
Ex 3.2, 14
Ex 3.2, 15
Ex 3.2, 16 Important
Ex 3.2, 17 Important
Ex 3.2, 18
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 (MCQ) Important
Ex 3.2, 22 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 3.2, 7 Find X and Y, if (ii) 2X + 3Y = [■8(2&3@4&0)] and 3X + 2Y = [■8(2&−2@−1&5)] Given 2X + 3Y = [■8(𝟐&𝟑@𝟒&𝟎)] Multiplying by 3 3 × (2X+ 3Y) = 3 [■8(2&3@4&0)] 6X + 9Y = [■8(2 × 3&3 × 3@4 × 3&0 × 3)] 6X + 9Y = [■8(6&9@12&0)] Given 3X + 2Y = [■8(𝟐&−𝟐@−𝟏&𝟓)] Multiplying by 2 2 × (3X + 2Y) = 2 × [■8(2&−2@−1&5)] 6X + 4Y = [■8(2 ×2&−2 ×2@−1 ×2&5 ×2)] 6X + 4Y = [■8(4&−4@−2&10)] Subtracting (1) from (2), (6X + 9Y) – (6X + 4Y) = [■8(6&9@12&0)] – [■8(4&−4@−2&10)] 6X + 9Y – 6X – 4Y = [■8(6−4&9−(−4)@12−(−2)&0−10)] 9Y – 4Y + 6X – 6X = [■8(2&9+4@12+2&−10)] 5Y + 0 = [■8(𝟐&𝟏𝟑@𝟏𝟒&−𝟏𝟎)] Y = 1/5 [■8(2&13@14&−10)] Y = [■8(𝟐/𝟓&𝟏𝟑/𝟓@𝟏𝟒/𝟓&−𝟏𝟎/𝟓)] = [■8(𝟐/𝟓&𝟏𝟑/𝟓@𝟏𝟒/𝟓&−𝟐)] Putting value of Y in (1) 6X + 9Y = [■8(6&9@12&0)] 6X + 9 [■8(2/5& 13/5@14/5&−2)] = [■8(6&9@12&0)] 6X + [■8(9 × 2/5&9 ×13/5@9 ×14/5&9 ×−2)] = [■8(6&9@12&0)] 6X + [■8(18/5&117/5@126/5&−18)] = [■8(6&9@12&0)] 6X = [■8(𝟔&𝟗@𝟏𝟐&𝟎)] – [■8(𝟏𝟖/𝟓&𝟏𝟏𝟕/𝟓@𝟏𝟐𝟔/𝟓&−𝟏𝟖)] 6X = [■8(6−18/5&9−117/5@12−126/5&0−(−18))] 6X = [■8((6 × 5 − 18)/5&(9 × 5 − 117)/5@ (12 × 5 − 126)/5&18)] 6X = [■8((30 − 18)/5&(45 − 117)/5@ (60 − 126)/5&18)] 6X = [■8(𝟏𝟐/𝟓&(−𝟕𝟐)/𝟓@ (−𝟔𝟔)/𝟓&𝟏𝟖)] X = 1/6 [■8(12/5&(−72)/5@ (−66)/5&18)] X = [■8(1/6 × 12/5&1/6 ×(−72)/5@1/6 ×(−66)/5&1/6 ×18)] X = [■8(𝟐/𝟓&(−𝟏𝟐)/𝟓@(−𝟏𝟏)/𝟓&𝟑)] Thus, X = [■8(𝟐/𝟓& (−𝟏𝟐)/𝟓@ (−𝟏𝟏)/𝟓&𝟑)] , Y = [■8(𝟐/𝟓&𝟏𝟑/𝟓@𝟏𝟒/𝟓&−𝟐)]