Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 3.2

Ex 3.2, 1

Ex 3.2, 2 (i)

Ex 3.2, 2 (ii) Important

Ex 3.2, 2 (iii)

Ex 3.2, 2 (iv)

Ex 3.2, 3 (i)

Ex 3.2, 3 (ii) Important

Ex 3.2, 3 (iii)

Ex 3.2, 3 (iv) Important

Ex 3.2, 3 (v)

Ex 3.2, 3 (vi) Important

Ex 3.2, 4

Ex 3.2, 5

Ex 3.2, 6

Ex 3.2, 7 (i)

Ex 3.2, 7 (ii) Important You are here

Ex 3.2, 8

Ex 3.2, 9

Ex 3.2, 10

Ex 3.2, 11

Ex 3.2, 12 Important

Ex 3.2, 13 Important

Ex 3.2, 14

Ex 3.2, 15

Ex 3.2, 16 Important

Ex 3.2, 17 Important

Ex 3.2, 18

Ex 3.2, 19 Important

Ex 3.2, 20 Important

Ex 3.2, 21 (MCQ) Important

Ex 3.2, 22 (MCQ) Important

Chapter 3 Class 12 Matrices

Serial order wise

Last updated at May 29, 2023 by Teachoo

Ex 3.2, 7 Find X and Y, if (ii) 2X + 3Y = [■8(2&[email protected]&0)] and 3X + 2Y = [■8(2&−2@−1&5)] Given 2X + 3Y = [■8(2&[email protected]&0)] Multiplying by 3 3 × (2X+ 3Y) = 3 [■8(2&[email protected]&0)] 6X + 9Y = [■8(2 × 3&3 × [email protected] × 3&0 × 3)] 6X + 9Y = [■8(6&[email protected]&0)] Given 3X + 2Y = [■8(2&−2@−1&5)] Multiplying by 2 2 × (3X + 2Y) = 2 × [■8(2&−2@−1&5)] 6X + 4Y = [■8(2 ×2&−2 ×2@−1 ×2&5 ×2)] 6X + 4Y = [■8(4&−4@−2&10)] Subtracting (1) from (2), (6X + 9Y) – (6X + 4Y) = [■8(6&[email protected]&0)] – [■8(4&−4@−2&10)] 6X + 9Y – 6X – 4Y = [■8(6−4&9−(−4)@12−(−2)&0−10)] 9Y – 4Y + 6X – 6X = [■8(2&[email protected]+2&−10)] 5Y + 0 = [■8(2&[email protected]&−10)] Y = 1/5 [■8(2&[email protected]&−10)] Y = [■8(2/5&13/[email protected]/5&−10/5)] = [■8(2/5&13/[email protected]/5&−2)] Putting value of Y in (1) 6X + 9Y = [■8(6&[email protected]&0)] 6X + 9 [■8(2/5& 13/[email protected]/5&−2)] = [■8(6&[email protected]&0)] 6X + [■8(9 × 2/5&9 ×13/[email protected] ×14/5&9 ×−2)] = [■8(6&[email protected]&0)] 6X + [■8(18/5&117/[email protected]/5&−18)] = [■8(6&[email protected]&0)] 6X = [■8(6&[email protected]&0)] – [■8(18/5&117/[email protected]/5&−18)] 6X = [■8(6−18/5&9−117/[email protected]−126/5&0−(−18))] 6X = [■8((6 × 5 − 18)/5&(9 × 5 − 117)/5@ (12 × 5 − 126)/5&18)] 6X = [■8((30 − 18)/5&(45 − 117)/5@ (60 − 126)/5&18)] 6X = [■8(12/5&(−72)/5@ (−66)/5&18)] X = 1/6 [■8(12/5&(−72)/5@ (−66)/5&18)] X = [■8(1/6 × 12/5&1/6 ×(−72)/[email protected]/6 ×(−66)/5&1/6 ×18)] X = [■8(2/5&(−12)/5@(−11)/5&3)] Thus, X = [■8(𝟐/𝟓& (−𝟏𝟐)/𝟓@ (−𝟏𝟏)/𝟓&𝟑)] , Y = [■8(𝟐/𝟓&𝟏𝟑/𝟓@𝟏𝟒/𝟓&−𝟐)]