Learn All Concepts of Chapter 3 Class 12 Matrices - FREE. Check - Matrices Class 12 - Full video



Last updated at Jan. 17, 2020 by Teachoo
Transcript
Ex 3.2, 16 If A = [■8(1&0&2@0&2&1@2&0&3)] , prove that A3 – 6A2 + 7A + 2I = O Finding A2 A2 = A × A = [■8(1&0&2@0&2&1@2&0&3)] [■8(1&0&2@0&2&1@2&0&3)] = [■8(1(1)+0 (0)+2(2)&1(0)+0(2)+2(0)&1(2)+0(1)+2(3)@0(1)+2(0)+1(2)&0(0)+2(2)+1(0)&0(2)+2(1)+1(3)@2(1)+0(0)+3(2)&2(0)+0(2)+3(0)&2(2)+0(1)+3(3))] = [■8(1+0+4&0+0+0&2+0+6@0+0+2&0+4+0&0+2+3@2+0+6&0+0+0&4+0+9)] = [■8(5&0&8@2&4&5@8&0&13)] Finding A3 A3 = A2. A = [■8(5&0&8@2&4&5@8&0&13)] [■8(1&0&2@0&2&1@2&0&3)] = [■8(5(1)+0 (0)+8(2)&5(0)+0(2)+8(0)&5(2)+0(1)+8(3)@2(1)+4(0)+5(2)&2(0)+4(2)+5(0)&2(2)+4(1)+5(3)@8(1)+0(0)+13(2)&8(0)+0(2)+13(0)&8(2)+0(1)+13(3))] = [■8(5+0+16&0+0+0&10+0+24@2+0+10&0+8+0&4+4+15@8+0+26&0+0+0&16+0+39)] = [■8(21&0&34@12&8&23@34&0&55)] Now calculating A3 - 6A2 +7A + 2I Putting values = [■8(21&0&34@12&8&23@34&0&55)] – 6 [■8(5&0&8@2&4&5@8&0&13)] + 7 [■8(1&0&2@0&2&1@2&0&3)] + 2 [■8(1&0&0@0&1&0@0&0&1)] = [■8(21&0&34@12&8&23@34&0&55)] – [■8(6(5)&0(5)&8(6)@2(6)&4(6)&5(6)@8(6)&0(6)&13(6))] + [■8(1(7)&0(7)&2(7)@0(7)&2(7)&1(7)@2(7)&0(7)&3(7))] + [■8(2(1)&2(0)&2(0)@2(0)&1(2)&0(2)@2(0)&0(2)&1(2))] = [■8(21−30+7+2&0−0+0+0&34−48+14+0@12−12+0+0&8−24+14+2&23−30+7+0@34−48+14+0&0+0+0+0&55−78+21+2)] = [■8(−30+30&0&−48+48@12−12&24−24&30−30@48−48&0&78−78)] = [■8(0&0&0@0&0&0@0&0&0)] = O Thus, A3 – 6A2 + 7A + 2I = O Hence proved
Ex 3.2
Ex 3.2, 2
Ex 3.2, 3
Ex 3.2, 4
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 Important
Ex 3.2, 8
Ex 3.2, 9
Ex 3.2, 10
Ex 3.2, 11
Ex 3.2, 12 Important
Ex 3.2, 13 Important
Ex 3.2, 14
Ex 3.2, 15
Ex 3.2, 16 Important You are here
Ex 3.2, 17 Important
Ex 3.2, 18 Important
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 Important
Ex 3.2, 22 Important
About the Author