


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 3.2
Ex 3.2, 2 (i)
Ex 3.2, 2 (ii) Important
Ex 3.2, 2 (iii)
Ex 3.2, 2 (iv)
Ex 3.2, 3 (i)
Ex 3.2, 3 (ii) Important
Ex 3.2, 3 (iii)
Ex 3.2, 3 (iv) Important
Ex 3.2, 3 (v)
Ex 3.2, 3 (vi) Important
Ex 3.2, 4
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 (i)
Ex 3.2, 7 (ii) Important
Ex 3.2, 8
Ex 3.2, 9
Ex 3.2, 10
Ex 3.2, 11
Ex 3.2, 12 Important
Ex 3.2, 13 Important You are here
Ex 3.2, 14
Ex 3.2, 15
Ex 3.2, 16 Important
Ex 3.2, 17 Important
Ex 3.2, 18
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 (MCQ) Important
Ex 3.2, 22 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 3.2, 13 If F (x) = [■8(cos𝑥&〖−sin〗𝑥&[email protected]𝑥&cos𝑥&[email protected]&0&1)] , Show that F(x) F(y) = F(x + y) We need to show F(x) F(y) = F(x + y) Taking L.H.S. Given F(x) = [■8(cos𝑥&〖−sin〗𝑥&[email protected]𝑥&cos𝑥&[email protected]&0&1)] Finding F(y) Replacing x by y in F(x) F(y) = [■8(cos𝑦&〖−sin〗𝑦&[email protected]𝑦&cos𝑦&[email protected]&0&1)] Now, F(x) F(y) = [■8(cos𝑥&〖−sin〗𝑥&[email protected]𝑥&cos𝑥&[email protected]&0&1)] [■8(cos𝑦&〖−sin〗𝑦&[email protected]𝑦&cos𝑦&[email protected]&0&1)] = [■8(cos𝑥 cos𝑦+(〖−sin〗𝑥 ) sin〖𝑦+0 〗 &cos〖𝑥(−sin〖𝑦)+(−sin〖𝑥)〖cos y〗〖+ 0〗 〗 〗 〗&0+0+0×[email protected]〖𝑥 cos〖𝑦+cos〖𝑥 sin〖𝑦+0〗 〗 〗 〗&sin𝑥 (−sin〖𝑦)+〗 cos〖𝑥 cos〖𝑦+0〗 〗&0+0+0×[email protected]×cos〖𝑦 +0×sin〖𝑦+0×1〗 〗&0×(−sin〖𝑦)+0×cos〖𝑦+0〗 〗&0+0+1×1)] = [■8(cos𝑥 cos𝑦 〖−sin〗𝑥.sin〖𝑦 〗 &〖−cos〗〖𝑥 sin〖𝑦−sin〖𝑥 cos𝑦 〗 〗 〗&[email protected]〖𝑥 cos〖𝑦+cos〖𝑥 sin𝑦 〗 〗 〗&−sin𝑥 sin〖𝑦+〗 cos〖𝑥 cos𝑦 〗&[email protected]&0&1)] We know that cos x cos y – sin x sin y = cos (x + y) & sin x cos y + cos x sin y = sin (x + y) = [■8(cos〖(𝑥+𝑦)〗 &〖−[cos〗〖𝑥 sin〖𝑦+sin〖𝑥 cos〖𝑦]〗 〗 〗 〗&[email protected]〖(𝑥+𝑦)〗&cos𝑥 cos〖𝑦 −〗 sin〖𝑥 sin𝑦 〗&[email protected]&0&1)] = [■8(cos〖(𝑥+𝑦)〗 &−sin〖(𝑥+𝑦)〗&[email protected]〖(𝑥+𝑦)〗&cos〖(𝑥+𝑦)〗&[email protected]&0&1)] Taking R.H.S F(x + y) Replacing x by (x + y) in F(x) = [■8(cos〖(𝑥+𝑦)〗 &−sin〖(𝑥+𝑦)〗&[email protected]〖(𝑥+𝑦)〗&cos〖(𝑥+𝑦)〗&[email protected]&0&1)] = L.H.S. Hence proved