Ex 3.2
Ex 3.2, 2 (i)
Ex 3.2, 2 (ii) Important
Ex 3.2, 2 (iii)
Ex 3.2, 2 (iv)
Ex 3.2, 3 (i)
Ex 3.2, 3 (ii) Important
Ex 3.2, 3 (iii)
Ex 3.2, 3 (iv) Important
Ex 3.2, 3 (v)
Ex 3.2, 3 (vi) Important
Ex 3.2, 4
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 (i)
Ex 3.2, 7 (ii) Important
Ex 3.2, 8
Ex 3.2, 9
Ex 3.2, 10
Ex 3.2, 11
Ex 3.2, 12 Important
Ex 3.2, 13 Important You are here
Ex 3.2, 14
Ex 3.2, 15
Ex 3.2, 16 Important
Ex 3.2, 17 Important
Ex 3.2, 18
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 (MCQ) Important
Ex 3.2, 22 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 3.2, 13 If F (x) = [β 8(cosβ‘π₯&γβsinγβ‘π₯&0@sinβ‘π₯&cosβ‘π₯&0@0&0&1)] , Show that F(x) F(y) = F(x + y) We need to show F(x) F(y) = F(x + y) Solving L.H.S. Given F(x) = [β 8(cosβ‘π₯&γβsinγβ‘π₯&0@sinβ‘π₯&cosβ‘π₯&0@0&0&1)] Finding F(y) Replacing x by y in F(x) F(y) = [β 8(πππβ‘π&γβπππγβ‘π&π@πππβ‘π&πππβ‘π&π@π&π&π)] Now, F(x) F(y) = [β 8(cosβ‘π₯&γβsinγβ‘π₯&0@sinβ‘π₯&cosβ‘π₯&0@0&0&1)] [β 8(cosβ‘π¦&γβsinγβ‘π¦&0@sinβ‘π¦&cosβ‘π¦&0@0&0&1)] = [β 8(cosβ‘π₯ cosβ‘π¦+(γβsinγβ‘π₯ ) sinβ‘γπ¦+0 γ &cosβ‘γπ₯(βsinβ‘γπ¦)+(βsinβ‘γπ₯)γcos yγβ‘γ+ 0γ γ γ γ&0+0+0Γ1@sinβ‘γπ₯ cosβ‘γπ¦+cosβ‘γπ₯ sinβ‘γπ¦+0γ γ γ γ&sinβ‘π₯ (βsinβ‘γπ¦)+γ cosβ‘γπ₯ cosβ‘γπ¦+0γ γ&0+0+0Γ1@0Γcosβ‘γπ¦ +0Γsinβ‘γπ¦+0Γ1γ γ&0Γ(βsinβ‘γπ¦)+0Γcosβ‘γπ¦+0γ γ&0+0+1Γ1)] = [β 8(cosβ‘π₯ cosβ‘π¦ γβsinγβ‘π₯.sinβ‘γπ¦ γ &γβcosγβ‘γπ₯ sinβ‘γπ¦βsinβ‘γπ₯ cosβ‘π¦ γ γ γ&0@sinβ‘γπ₯ cosβ‘γπ¦+cosβ‘γπ₯ sinβ‘π¦ γ γ γ&βsinβ‘π₯ sinβ‘γπ¦+γ cosβ‘γπ₯ cosβ‘π¦ γ&0@0&0&1)] = [β 8(cosβ‘γ(π₯+π¦)γ &γβ[cosγβ‘γπ₯ sinβ‘γπ¦+sinβ‘γπ₯ cosβ‘γπ¦]γ γ γ γ&0@sinβ‘γ(π₯+π¦)γ&cosβ‘π₯ cosβ‘γπ¦ βγ sinβ‘γπ₯ sinβ‘π¦ γ&0@0&0&1)] = [β 8(πππβ‘γ(π+π)γ &βπππβ‘γ(π+π)γ&π@πππβ‘γ(π+π)γ&πππβ‘γ(π+π)γ&π@π&π&π)] We know that cos x cos y β sin x sin y = cos (x + y) & sin x cos y + cos x sin y = sin (x + y) Solving R.H.S F(x + y) Replacing x by (x + y) in F(x) = [β 8(cosβ‘γ(π₯+π¦)γ &βsinβ‘γ(π₯+π¦)γ&0@sinβ‘γ(π₯+π¦)γ&cosβ‘γ(π₯+π¦)γ&0@0&0&1)] = L.H.S. Hence proved