Ex 3.2, 9 - Chapter 3 Class 12 Matrices
Last updated at April 16, 2024 by Teachoo
Ex 3.2
Ex 3.2, 2 (i)
Ex 3.2, 2 (ii) Important
Ex 3.2, 2 (iii)
Ex 3.2, 2 (iv)
Ex 3.2, 3 (i)
Ex 3.2, 3 (ii) Important
Ex 3.2, 3 (iii)
Ex 3.2, 3 (iv) Important
Ex 3.2, 3 (v)
Ex 3.2, 3 (vi) Important
Ex 3.2, 4
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 (i)
Ex 3.2, 7 (ii) Important
Ex 3.2, 8
Ex 3.2, 9 You are here
Ex 3.2, 10
Ex 3.2, 11
Ex 3.2, 12 Important
Ex 3.2, 13 Important
Ex 3.2, 14
Ex 3.2, 15
Ex 3.2, 16 Important
Ex 3.2, 17 Important
Ex 3.2, 18
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 (MCQ) Important
Ex 3.2, 22 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 3.2,9 Find x and y, if 2[■8(1&3@0&𝑥)] + [■8(𝑦&0@1&2)] = [■8(5&6@1&8)] Given that 2[■8(1&3@0&𝑥)] + [■8(𝑦&0@1&2)] = [■8(5&6@1&8)] [■8(1×2&3×2@0×2&𝑥×2)] + [■8(𝑦&0@1&2)] = [■8(5&6@1&8)] [■8(𝟐&𝟔@𝟎&𝟐𝒙)] + [■8(𝒚&𝟎@𝟏&𝟐)] = [■8(𝟓&𝟔@𝟏&𝟖)] [■8(2+𝑦&6+0@0+1&2𝑥+2)] = [■8(5&6@1&8)] [■8(𝟐+𝒚&𝟔@𝟏&𝟐𝒙+𝟐)] = [■8(𝟓&𝟔@𝟏&𝟖)] Since matrices are equal. Corresponding elements are equal Therefore, 2 + y = 5 2x + 2 = 8 Solving (1) 2 + y = 5 y = 5 – 2 y = 3 Solving (2) 2x + 2 = 8 2x = 8 – 2 2x = 6 x = 𝟔/𝟐 = 3 Hence, x = 3 & y = 3